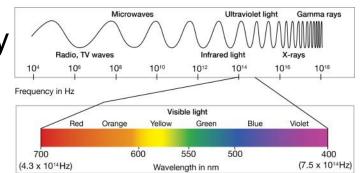
# Electromagnetic spectrum

## The big picture

#### **Science explanations**

• a family of radiations: 'electromagnetic waves' that behave similarly (reflection, refraction, dispersion, diffraction, interference, polarisation)


• differences: wavelength, frequency

& photon energy;

ionising v non-ionising

#### How science works

- Practical applications of all parts of the spectrum
- Risks and benefits, health studies, making decisions
- Uncertainties in science



## Main teaching challenges

#### The electromagnetic spectrum is

- mostly invisible
- an abstract idea

Students understand more when

 it is introduced carefully, by stages. Start with visible light then extend through both UV & infrared.

- it is made perceptible (concrete)
- connects with students' lives and interests

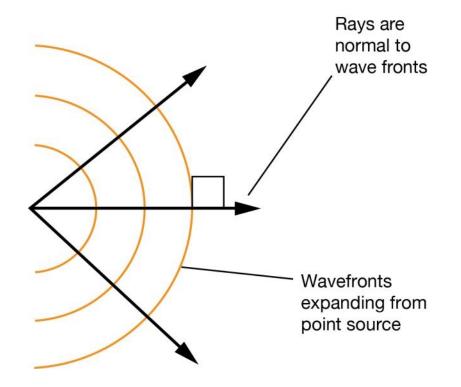
## **Prior learning**

- sound (vibrations and waves)
- light
- source-journey-detector model of radiation

#### TASK:

How does the model apply to (1) sound? (2) light?

## Source-journey-detector


A useful model: makes the invisible more concrete.

**Task:** Name at least 1 source and 1 detector for each part of the full spectrum.

- gamma rays
- X-rays
- ultraviolet
- visible light
- infrared
- microwaves
- radio waves

Use sources & detectors, either as demonstration experiments, or as a circus of class experiments.

## **Picturing the journey**



## Photons, frequency, wavelength

speed of all electromagnetic waves,  $c = f\lambda$ where f = frequency and  $\lambda$  = wavelength  $c = 3.0 \times 10^8 \,\mathrm{ms}^{-1}$ 

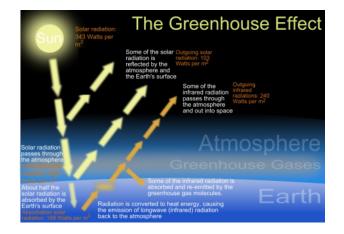
#### ... in ANY (inertial) frame of reference.

photon energy,

$$E = hf$$
  
Planck constant,  $h = 6.63 \times 10^{-34} \,\mathrm{J} \cdot \mathrm{s}$ 

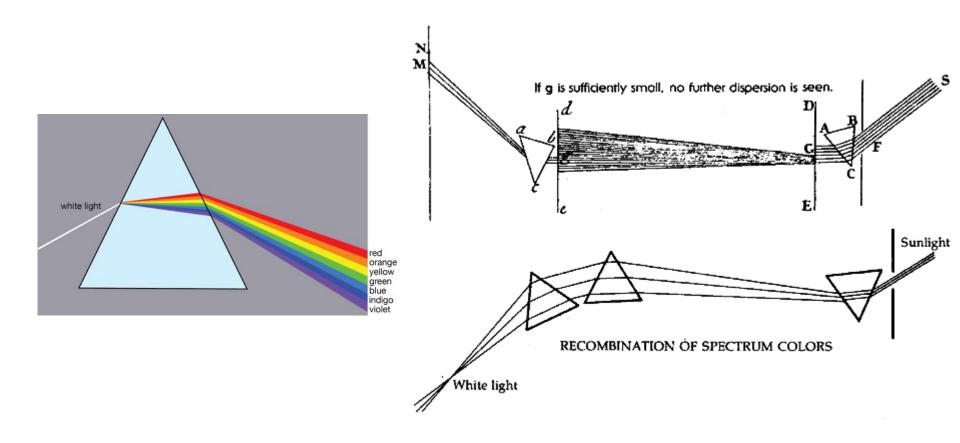
## Some contexts for teaching

#### Science in the news

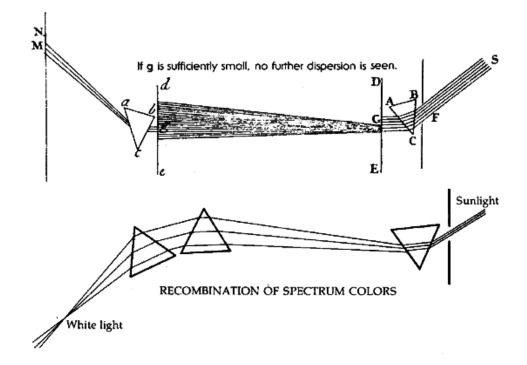

e.g. global warming. The greenhouse effect: a story about infrared radiation of different wavelengths

#### Medical imaging

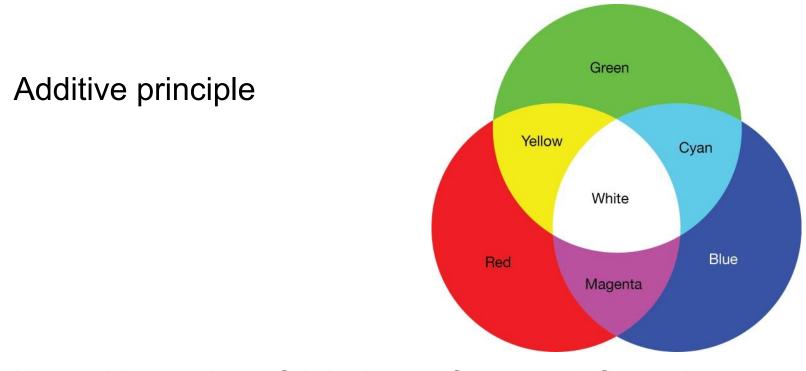
www.teachingmedicalphysics.org.uk/


#### Modern astronomy

detecting emissions across the whole em spectrum Chromoscope




## The visible spectrum


#### Light spectrum with a prism



#### **Newton's prism experiments**



(light entering from the right)



**Combining colours of light** 

Note: Absorption of light by surfaces and filters involves <u>subtractive</u> principle (e.g. adding pigments)

## **Combining colours of light**

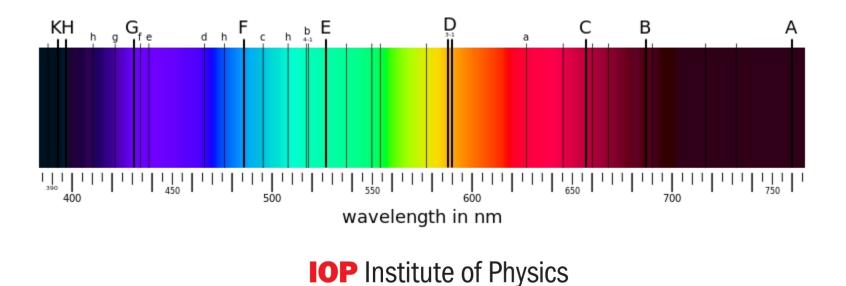
#### **SEP Activity 2**

with light emitting diodes (LEDs) as light sources

Power source: 3V lithium batteries (disc-shaped)

## Signalling with optical fibres

#### **SEP Activity 3**


Radiation model: journey

source: LED from previous experiment journey: through an optical fibre detector: sheathed light dependent resistor (LDR) connected to a digital multimeter

#### **Light sources**

- Continuous spectra (temperature)
- Line spectra (emission and absorption)

the Sun: an absorption line spectrum



## Light sources SEP Activity 1

Make a spectroscope.

Use your spectroscope to compare light sources.

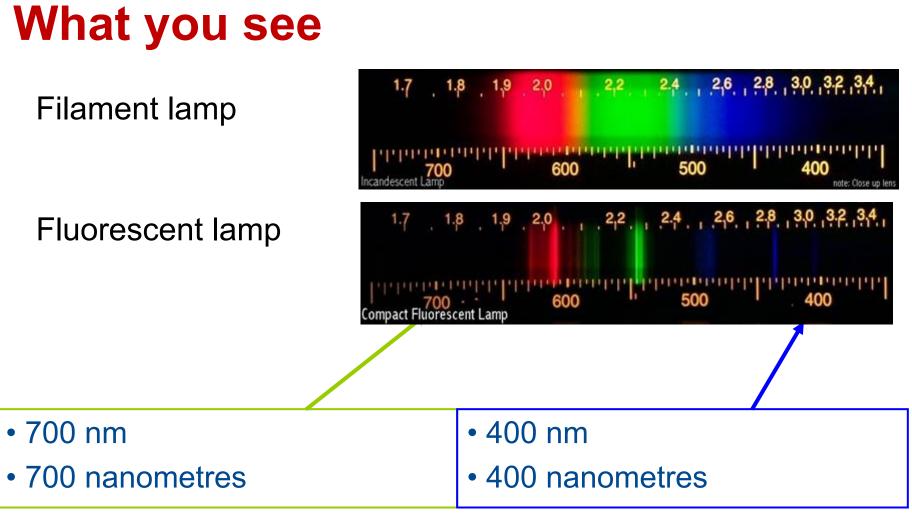



Photo credit <u>http://home.comcast.net/~mcculloch-brown/astro/spectrostar.html</u>

## **Beyond the visible**

## **Detecting infrared**

journey Radiation model: source \_\_\_\_\_\_\_\_\_ detector

source: non-luminous objects (warm, cool)

**Classic experiments**: various surfaces with IR thermometer as detector; TV etc 'remote' with mobile phone camera as detector; radiant heater with hand as detector (Al foil, one side blackened)

#### **SEP Activity 4**

detector: infrared photo-transistor connected to a digital multimeter

## Signalling with infrared

#### SEP Activity 5

Use terminal blocks to make

- transmitter (source) infrared LED in series with a 82  $\Omega$  resistor, powered by 2 AA batteries
- receiver (detector) photo-transistor in series with an LED, powered by 2 AA batteries

Allow an air gap of 5-6 cm (journey)

Also: Try detecting the infrared signal emitted by a TV remote control when you press one of its buttons.

## **Detecting ultraviolet**

 journey

 Radiation model:
 source

**Classic experiments:** UV lamp illuminating detectors such as fluorescent rocks, white fabrics with and without 'optical brighteners', fluorescent nail polish

#### **SEP Activity 7**

**SOURCE:** sunlight

detector 1: phosphorescent film

detector 2: UV-sensitive beads

**journey:** detect direct sunlight, or sunlight that has passed through a windowpane; filtering effect of sunscreens & sunglasses

#### **Detecting microwaves**

journey Radiation model: source \_\_\_\_\_\_ detector

**Classic experiment**: microwave source & detector with accessories

#### **SEP Activity 6**

**SOURCE:** mobile phone (phone a friend?)

detector: phone flasher

**journey:** Place various materials between the source and detector (e.g. conductive mesh, paper, dry muslin, wet muslin).

## **Mobile phones**

#### Precautionary principle:

UK government recommends children under 8 years avoid using mobile phones.

How would you *know* if there were health risks associated with using mobiles?

Health studies: sample size & matching populations.

Possible student activity:

Use Ofcom's Sitefinder database to find out about local mobile network base stations. Compare exposure levels with information from the Health Protection Agency.



#### **Detecting radio waves**

 journey

 Radiation model:
 source

SOURCE: SEP short-circuit kit, SEP 'noisy motor', AM broadcast

detector: simple AM radio

#### **Detecting gamma rays**

journey Radiation model: source \_\_\_\_\_\_ detector

#### **Classic experiment**

source: radioactive Co-60 or Ra-226

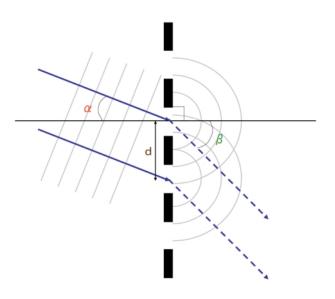
detector: GM tube with audible output plus ratemeter or counter

## **Properties of em waves**

## Diffraction

**Diffraction**: waves passing through a narrow opening spread as they emerge on the other side. **Ripple tank demonstration.** 



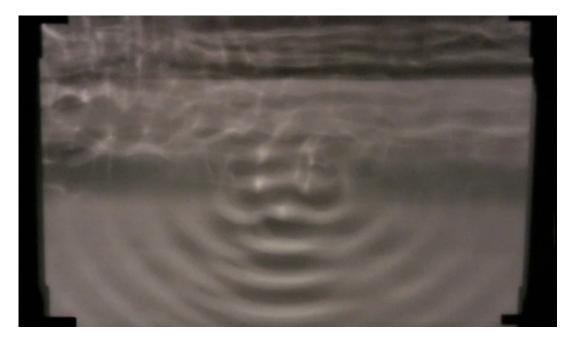

## **Diffraction grating**

**Diffraction grating**: a surface with many fine grooves in it, which act as parallel openings.

#### Spectrum from a diffraction grating

Wavefronts diffracted by grooves of the grating

- superposition produces an interference pattern.
- pattern width depends on wavelength (colour).




### **Diffraction at a single slit**

View a strong light source through narrow gap between two fingers.

See the parallel black lines? – a diffraction pattern.

diffraction in a ripple tank



## **SEP diffraction grids**

#### **SEP Activity 8**

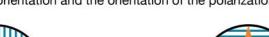
Holding the grid close to your eye, view a point source of visible light with grid of

- horizontal lines
- zigzag lines

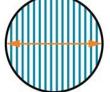
## **Polarisation of light**

em waves: transverse electric & magnetic oscillations,

produced by vibrating charges


A **polarising filter** absorbs components of electric

field oscillations in one plane (and transmits components


of the oscillations in the perpendicular plane).

orientation and the orientation of the polarization axis

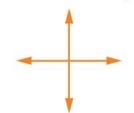
Relationship between long-chain molecule



**IOP** Institute of Physics



When molecules in the filter are aligned vertically, the polarization axis is horizontal.




When molecules in the filter are aligned horizontally, the polarization axis is vertical.

A light wave is known to vibrate in a multitude of directions...



... in general, a light wave can be thought to vibrate in a vertical plane and in a horizontal plane.



## Support, references

talkphysics.org

SPT 11-14 Light & sound

Gatsby SEP booklets ... free @ National STEM Centre e.library

Radiation and communication Seeing beyond the visible Light and matter

Practical resources available from Mindsets

David Sang (ed, 2011) Teaching secondary physics ASE / Hodder