
Data collection format



1.Relational
2. Non-Relational
3. Key-value
4.Document
5. In-memory
6.Polyglot Persistence



Introduction to Relational Databases
•Definition of a relational database
•Key characteristics of relational 
databases
•Importance of relational databases in 
modern data management



Data Storage in Relational Databases
•Concept of tables and rows
•Columns and data types
•Primary keys and foreign keys
•Relationships between tables (one-to-
many, many-to-many)



Data Organization and Normalization
•Normalization principles (1NF, 2NF, 
3NF)
•Benefits of normalization (data 
integrity, redundancy reduction)
•Challenges and trade-offs in 
normalization



Query Language and Operations
•Introduction to SQL (Structured Query 
Language)
•Basic SQL commands (SELECT, INSERT, 
UPDATE, DELETE)
•Joins, filters, and aggregations



Advantages of Relational Database Design

• Scalability and performance
• Data consistency and integrity
• Flexibility and adaptability
• Widespread adoption and support







Non-Relational



"Non-Relational" is a term used to describe database 
management systems that do not follow the 
traditional relational database model. In other words, 
non-relational databases are databases that do not use 
the standard table-based structure with rows and 
columns found in relational databases.



Introduction to Non-Relational Databases

• Definition of Non-Relational (NoSQL) 
databases

• Key characteristics: flexible schema, 
horizontal scaling, high availability



Types of Non-Relational Databases
• Key-Value Stores (e.g., Redis, Amazon DynamoDB)
• Document-Oriented Databases (e.g., MongoDB, Apache 

CouchDB)
•Wide-Column Stores (e.g., Apache Cassandra, Apache 

HBase)
• Graph Databases (e.g., Neo4j, Amazon Neptune)



Key-Value Stores
• Example: Amazon DynamoDB

• Data model: key-value pairs

• Use cases: caching, user session 

management, real-time applications



Document-Oriented Databases

• Example: MongoDB

• Data model: flexible, schema-less 

documents (e.g., JSON, BSON)

• Use cases: content management 

systems, mobile apps, IoT data



Wide-Column Stores
• Example: Apache Cassandra
• Data model: tables with dynamic 

columns
• Use cases: time-series data, user 

activity tracking, real-time analytics



Graph Databases
• Example: Neo4j

• Data model: nodes, relationships, and properties

• Use cases: social networks, recommendation 

engines, fraud detection



"In-memory database"

"In-memory database" refers to a type of database management system where the entire 

database is stored in the main memory (RAM) of the computer, as opposed to being stored on a 

persistent storage device like a hard disk or solid-state drive.



Introduction to In-Memory Databases

Definition of in-memory databases

Key characteristics: data stored in RAM, high performance, 

volatile data



Architecture of In-Memory Databases

Data storage in main memory (RAM)

Advantages of in-memory architecture: low latency, high 

throughput

Challenges: managing data persistence and recovery



Use Cases for In-Memory Databases

Real-time analytics and business intelligence

Caching and session management

High-speed transactions and trading systems

Internet of Things (IoT) and sensor data processing



Popular In-Memory Database Solutions

• Redis: Open-source key-value store
• Apache Ignite: Distributed in-memory data fabric
• SAP HANA: In-memory database management system for 

analytics
• MemSQL: Distributed in-memory database with scalability



Advantages and Tradeoffs of In-Memory Databases

• Advantages: Extremely high performance, low latency, real-time data 
processing

• Tradeoffs: Dependence on sufficient RAM, risk of data loss on system 
failure

• Considerations for choosing in-memory databases: data volume, 
performance requirements, persistence needs



Throughout the presentation, you can include visual 
aids, such as diagrams or charts, to illustrate the key 
concepts and examples of in-memory databases. 
Additionally, you can highlight the specific use cases 
and industries where in-memory databases are most 
beneficial, as well as discuss the potential 
challenges and trade-offs associated with this 
database architecture.


	Slide 1: Data collection format 
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24

