บทที่ 11 เทคนิคการออกแบบขั้นสูง (Advanced Design Techniques)

สมมุติว่าต้องการที่จะออกแบบบานพับง่ายๆ เป็นงาน assembly ที่สามารถจะแก้ไขได้ง่ายๆ เพื่อทำเป็น assembly อื่นๆ ในลักษณะที่คล้ายคลึงกัน จุดนี้ต้องใช้วิธีที่มีประสิทธิภาพเพื่อที่จะสร้างบานพับที่เข้าคู่กัน 2 ชิ้น กับตัวเข็ม สำหรับ assembly บานพับที่มีขนาดต่างๆ กัน

การวิเคราะห์และวางแผนจะช่วยให้ได้งานออกแบบที่ปรับเปลี่ยนได้สะดวก มีประสิทธิภาพและมีข้อกำหนดที่ดี จากนั้นจึงทำการเปลี่ยนขนาดตามที่ต้องการ โดยที่จะยังได้งาน assembly บานพับตามการออกแบบที่ตั้งไว้

ในบทนี้จะเป็นการพูดถึง:

- การแยกรายละเอียดงาน assembly เพื่อให้ได้ แนวการออกแบบที่ดีที่สุด
- การใช้ layout sketch
- การงดใช้ feature (suppressing feature) เพื่อ สร้าง part configuration ต่างๆ กัน
- การสร้าง part ใหม่ใน *context* ของ assembly

ในบทนี้จะถือว่าผู้อ่านรู้ถึงการใช้วิธีการแบบพื้นฐาน ของ assembly แล้ว อย่างเช่นการย้ายหรือหมุนส่วน ประกอบต่างๆ หรือการใส่การจับคู่แบบต่างๆ (หัวข้อ เหล่านี้อยู่ในบทที่ 3 และบทที่ 10 ของคู่มือเล่มนี้)

วิเคราะห์งาน assembly (Analyzing the Assembly)

ลูกค้าที่ประสบความสำเร็จกับการใช้ SolidWorks บอกว่ากุญแจที่ทำให้ใช้โปรแกรม SolidWorks ได้อย่างมีประ สิทธิภาพคือการวางแผน ด้วยการวิเคราะห์ที่รอบคอบจะทำให้ได้โมเดลที่สอดคล้องกันที่ออกแบบดีกว่า, ปรับ เปลี่ยนได้ง่ายกว่า นั่นคือก่อนที่จะเริ่ม ให้วิเคราะห์งาน assembly โดยคำนึงถึง:

- ความขึ้นอยู่ระหว่างกันของขึ้นส่วนต่างๆ ในงาน assembly ตรงนี้จะช่วยให้เลือกแนวทางการออกแบบที่ดี ได้:
 - ใช้การออกแบบในลักษณะ bottom-up คือสร้าง part แต่ละชิ้นส่วนแยกโดยไม่ขึ้นอยู่ระหว่างกันแล้วจึง นำชิ้นงานเหล่านั้นมาประกอบกันใน assembly
 - ใช้การออกแบบที่เป็น top-down คืออาจเริ่มต้นจาก part ต่างๆ ที่เป็นแบบสำเร็จก่อน จากนั้นสร้าง part อื่นๆ avlu context ของ assembly โดยใช้การอ้างถึง feature ต่างๆ จากในบางชิ้นส่วนของ assembly มาเป็นตัวขับขนาดให้ชิ้นงานอื่นๆ
- กำหนด feature ที่จะใช้สร้าง part แต่ละชิ้น โดยเข้าใจถึงความขึ้นอยู่ระหว่างกันของ feature ต่างๆ ของแต่ ละ part โดยมองหาแบบต่างๆ ที่เป็นชุด (patterns) และใช้ข้อได้เปรียบของรูปร่างที่มีซ้าย-ขวาเหมือนกัน (symmetry) เข้าช่วยในทุกครั้งที่มีโอกาส
- ดูลำดับในการสร้าง feature แต่ละอันและนึกถึงขั้นตอนการผลิตที่จะสร้าง part จริงๆ ขึ้นมา

ความขึ้นอยู่ระหว่างกันในงาน Assembly (Dependencies in the Assembly) ส่วนของบานพับ (The hinge pieces)

บานพับทั้ง 2 อันมีลักษณะที่คล้ายกันคือ: ขนาดและความหนาของตัวบานพับ, ตัวกระบอกสำหรับรับ กับตัวเข็ม, และตำแหน่งการวางรูเจาะสกรู โดยมีข้อแตกต่างระหว่างบานพับทั้ง 2 ขิ้นอยู่อย่างเดียวคือ การตัดช่องและการวางแถบบนตัวกระบอกที่จะต้องประกบบานพับเข้าด้วยกัน มีหลายๆ วิธีสำหรับใช้กับปัญหานี้:

- ใช้การ copy คือสร้างบานพับมา 1 ชิ้นแล้วทำ copy ขึ้นมา จากนั้นแก้ไขตัว copy ทำเป็นบานพับ ชิ้นที่ 2 แต่ด้วยวิธีนี้ถ้าต้องการทำ assembly ใหม่อีกอันในขนาดที่ต่างออกไปจะต้องแก้ไขชิ้นงาน ทั้ง 2 ชิ้น จะเห็นว่าวิธีนี้ไม่ดีที่สุดเพราะมีโอกาสสร้างความผิดพลาดขึ้นได้เนื่องจากบานพับทั้ง 2 ชิ้นไม่ได้ขึ้นอยู่ระหว่างกัน
- ใช้การ derive คือสร้าง base part ขึ้นมาให้ประกอบด้วยส่วนหลักๆ จากนั้น derive บานพับทั้ง 2 อันจาก base part นั้น (ใช้ Insert, Base Part หรือ Insert, Mirror Part) ในการเปลี่ยนขนาดส่วน หลักๆ ให้แก้ไขที่ต้นฉบับแล้ว part ทั้ง 2 ชิ้นที่เกิดจากการ derive จะถูกเปลี่ยนแก้ให้ใหม่โดย อัตโนมัติ ลักษณะแบบนี้ใช้ได้ดีในหลายๆ กรณีแต่ก็มีข้อเสียด้วยคือในการแก้ไข part ที่มาจาก การ derive จะไม่สามารถจัดการกับตัวบอกขนาดที่เป็นตัวแปรตามของต้นแบบได้ ทำให้ไม่ สามารถอ้างการบอกขนาดเหล่านั้นได้เวลาที่ต้องการสร้าง feature ที่ต่างออกไป

ใช้ configure ซึ่งเป็นวิธีที่จะใช้ในตัวอย่างนี้คือสร้าง configuration 2 อันที่ต่างกันจาก part เดียว กัน วิธีนี้จะดีที่สุดเพื่อให้แน่ใจได้ว่าชิ้นส่วนต่างๆ จะเข้ากันได้ เพราะจาก part 1 อันถูกนำมาใช้ สร้าง part อีก 2 อันโดยที่ตัว part จะรวม feature ต่างๆ ที่จะต้องใช้ไว้ทั้งหมด จากนั้นสร้าง configuration ที่ต่างกันโดยใช้การงดใช้ feature (suppressing feature) คือเอา feature ออก จาก configuration ที่ใช้อยู่

ตัวเข็ม (The pin)

ในการสร้างตัวเข็มจะต้องรู้ขนาดของตัวกระบอกเพื่อที่จะทำเข็มที่มีขนาดพอดีกันมาเสียบ และด้วยการ สร้างตัวเข็มใน context ของ assembly จะทำให้ได้ขนาดของเข็มตามขนาดที่กำหนดบนตัวบานพับ เสมอ

สรุป (Conclusion)

ในการทำ assembly จะใช้หลักการออกแบบที่ผสมกันคือขั้นที่ 1 ออกแบบตัวบานพับให้มี configuration ต่างๆ ที่จำเป็นแล้วใส่บานพับทั้ง 2 นี้ลงในงาน assembly (ตามหลัก bottom-up) จาก นั้นออกแบบตัวเข็มไว้ใน context ของ assembly (ใช้หลัก top-down) โดยอ้างเรขาคณิตของโมเดลตัว บานพับตามที่จำเป็น

วิเคราะห์แต่ละ Part (Analysis of the Individual Parts)

จากที่เข้าใจความเกี่ยวเนื่องกันระหว่างชิ้นงานแล้ว มาดูที่แต่ละ part กันบ้าง

Feature ที่เป็นพื้นในส่วนของบานพับ (The common features of the hinge pieces)

ชิ้นงานมี base feature เป็นสี่เหลี่ยมแบน มีกระบอกกลมตามขอบด้านหนึ่ง โดยมีเส้นผ่านศูนย์กลางตามความ หนาของตัว base และบานพับแต่ละอันจะมีรูเจาะสำหรับสกรู 4 รู ตำแหน่งของรูช้าย-ขวาเท่ากันเทียบกับจุดกึ่ง กลางของด้านยาว และเวลาที่มีการเปลี่ยนขนาดของตัวบานให้รักษาสัดส่วนของระยะห่างตามแนวกว้างและ ยาวไว้

Feature ส่วนที่ต่างกันของตัวบานพับทั้ง 2 อัน (The different features of the hinge pieces)

การตัด (และการวางแถบที่สอดเข้าด้วยกัน) ตามแนวตัวกระบอกเป็น feature ที่ทำให้บานพับทั้ง 2 อันต่างกันคือ อันหนึ่งมี 3 ช่องตัด อีกอันมี 2 ช่องตัด โดยวางตำแหน่งซ้าย-ขวาเท่ากันเทียบกับจุดกลางของขอบด้านยาวและ ช่องตัดแต่ละอันจะต้องใหญ่กว่าแถบที่สอดเข้ามาสักเล็กน้อยเพื่อไม่ให้บานพับขบกันเวลาประกอบเข้าด้วยกัน

ตัวเข็ม (The pin)

ส่วนความยาวและขนาดเส้นผ่านศูนย์กลางของตัวเข็มจะขึ้นกับตัวบานพับ และส่วนหัวของตัวเข็มควรจะเท่ากับ เส้นผ่านศูนย์กลางรอบนอกของตัวกระบอก

ลำดับของ Feature (Feature Order)

ตอนนี้มาดู feature ที่จะใช้และวางลำดับที่จะสร้างขึ้นมา

- Base feature ยึดขึ้นมาเป็น thin feature และเนื่องจาก part มีลักษณะเป็น symmetric จึงใช้ mid-plane extrusion คือหลังจากนั้นจะได้ใช้ mid-plane เป็นระนาบของการ symmetry สำหรับทำ mirror ให้กับ feature อื่นๆ ต่อไป
- ตัวกระบอก (Barrel) ใช้การ sweep รูป profile วงกลมตามแนวขอบยาวของตัวโมเดล จากนั้นสร้าง cut ที่มีศูนย์กลางร่วมกับตัว boss
- รูเจาะสำหรับสกรู (Countersunk holes) ใช้ Hole Wizard เพื่อสร้างรูเจาะขึ้นมา 1 อันแล้วใช้สมการและ การ mirror เพื่อ copy อันอื่นๆ ไปวางในตำแหน่งที่กำหนด
- ช่องตัด (Cuts for tabs) สร้าง layout sketch โดยอ้างขนาดจากตัวฐาน แล้วใช้ sketch เพื่อ extrude ทำ cut เป็น 2 feature แยกกัน อันหนึ่งมี 3 ช่องตัดกับอีกอันหนึ่งมี 2 ช่องตัด
- 5. *Configurations* กำหนด configuration 2 อันสำหรับใช้ใน assembly โดยการ *งดใช้* cut feature 1 อันใน configuration แต่ละอัน
- 6. Assembly ใส่ตัวบานพับ (จาก configuration แต่ละอัน) และจับคู่เข้าด้วยกัน
- ตัวเข็ม (Pin) เพิ่ม part ใหม่ลงใน assembly อ้างเรขาคณิตของตัวบานพับมาใช้กับ sketch ของ profile และ path จากนั้นใช้ sweep สร้าง base feature
- หัวเข็ม (*Pin head*) แปลง profile ของตัวกระบอกมาใช้สร้าง sketch แล้วยืด sketch ขึ้นมา จากนั้นสร้าง โดมเข้าตรงหน้าเรียบของหัว

คำพูดส่งท้าย (A Final word)

ตรงนี้ดูเหมือนจะเป็นอะไรที่ต้องคิดรายละเอียดกันอย่างมากสำหรับทำ assembly ง่ายๆ แต่อย่างไรก็ตามแบบ ฝึกหัดนี้ก็มีประโยชน์มากที่จะช่วยให้ค้นพบแนวทางที่ดีในการสร้าง part *ก่อน* ที่จะเริ่มการออกแบบ และด้วย การวิเคราะห์ที่รอบคอบก่อนที่จะเริ่มจะทำให้เราสามารถสร้างโมเดลที่สามารถเปลี่ยนแก้ได้สะดวกและเป็น parametric โมเดลเต็มรูปแบบ คือขณะที่เปลี่ยนค่า parameter เพียงบางตัว ส่วนอื่นๆ ก็จะเปลี่ยนตามไปโดย อัตโนมัติ

สร้างบานพับชิ้นที่เป็นพื้น (Creating the Basic Hinge Piece)

- 1. เปิด Part แล้วเปิด sketch บน **Plane1** ให้ sketch เส้นตั้งและให้ขนาดความยาวเป็น 60mm.
- - a) บนแถบ End Condition ให้ค่า Type เป็น Mid Plane และ Depth เป็น 120mm.
 - b) บนแถบ Thin Feature ให้ค่า Type เป็น One-Direction, Wall Thickness เป็น 5mm. และเลือกที่ Reverse
 - c) คลิก **OK**
- เปิด sketch บนหน้าตั้งแคบๆ ให้ sketch วงกลมที่ขอบด้านบน โดยมีจุดศูนย์กลางอยู่ที่จุดยอดด้านหน้า
- ใส่ความสัมพันธ์แบบ coincident ระหว่างขอบของวงกลมกับ จุดยอดด้านหลังเพื่อกำหนดให้ sketch เป็น fully defined แล้ว ปิด sketch
- คลิก Insert, Boss, Sweep ให้คลิกในช่อง Sweep section แล้วคลิกรูป sketch วงกลม (ถ้ายังไม่อยู่ในรายการ) จากนั้น คลิกช่อง Sweep path แล้วคลิกที่ขอบด้านยาวของโมเดลแล้ว คลิก OK
- 6. เจาะรูทะลุตัวกระบอก:
 - a) เปิด sketch บนหน้าแคบๆ
 - b) Sketch และให้ขนาดวงกลมเล็กๆ ตามที่แสดง แล้วให้ความ
 สัมพันธ์แบบ concentric กับขอบนอกของตัวกระบอก
- 7. บันทึกไฟล์ในชื่อ Hinge.sldprt

เจาะรูสำหรับสกรู (Adding the Screw Holes)

ในส่วนนี้เป็นการเจาะรูที่ตำแหน่งต่างๆ สำหรับตัวสกรูทั้งหมด ในการวางตำแหน่งรูเจาะแต่ละที่จะกำหนดโดย บอกขนาดจากด้านหนึ่งคงที่ไว้ ส่วนการบอกขนาดจากอีกด้านจะใช้สมการมาเป็นตัวขับ

- คลิกที่หน้าด้านกว้างของโมเดลแล้วคลิก Hole Wizard 🛋 บน Features ทูลบาร์ หรือคลิก Insert, Features, Hole, Wizard
- ในกล่องข้อความ Hole Definition ให้ค่า Hole type เป็น Countersunk และ End condition เป็น Through All
- ในการให้ขนาดให้คลิก-คลิกตัวเลขในคอลัมน์ Value แล้วใส่ค่าใหม่ลงไปคือ Diameter เป็น 8mm, C-Sink
 Angle เป็น 82^o และ C-Sink Diameter เป็น 15mm
- คลิก Next แล้วลากจุดที่ศูนย์กลางของรูเจาะไปวางในตำแหน่งใกล้เคียง ตามที่แสดงในรูป จากนั้นคลิก Finish ขยาย feature ของ Hole1 ใน FeatureManager design tree รูเจาะที่ สร้างโดย Hole wizard จะมี sketch อยู่ 2 ส่วน อันหนึ่งเป็นจุดบอก ตำแหน่งศูนย์กลางของรูเจาะ อีกอันเป็นรูป contour ของรูเจาะ
- 5. กดคีย์ Ctrl ค้างไว้ขณะลาก feature ส่วน Hole1 จากบน graphics
 - area หรือใน FeatureManager design tree แล้วปล่อย Hole1 ที่อีกตำแหน่งหนึ่งบนหน้าอันเดิมเพื่อทำ copy ขึ้นมา
- คลิกขวา sketch ซึ่งเป็น under defined อันที่มีจุดบน Hole1 แล้วเลือก Edit Sketch จากนั้นบอกขนาดของจุดเทียบกับขอบ ทั้ง 2 ด้านของตัวบานพับตามรูป ถึงตรงนี้ยังไม่ต้องปิด sketch
- 7. เพิ่มสมการสำหรับควบคุมตำแหน่งทางแนวตั้งของจุดนั้น:
 - a) คลิก Equations Σ หรือ Tools, Equation แล้วคลิก Add
 - b) คลิก-คลิกตัวฐานเพื่อแสดงเลขบอกขนาด คลิกที่เลขบอกขนาดเพื่อสร้างสมการตามนี้คือ "D2@Sketch5" = "D1@Sketch1" / 2

"D2@Sketch5" จะมีค่าเป็น 30mm ใน sketch และ D1@Sketch1 จะมีค่าเป็น 60mm คือขนาดของ

ฐาน

หมายเหตุ: ถ้าให้ขนาดระยะ 30mm ก่อนให้ขนาดระยะ 15mm ก็จะได้ค่า 30mm เป็น D1@Sketch5

> ตรงนี้จะเป็นการตั้งให้ค่าระยะที่วางจุดกับขอบล่างให้เป็นครึ่งหนึ่งของความสูงของบาน พับ (60mm)

 คลิก OK เพื่อปิดกล่องข้อความ New Equation แล้วคลิก OK เพื่อปิดกล่องข้อความ Equations จากนั้น ออกจากการ sketch

- แก้ sketch ที่เป็น under defined ที่มีจุดของ Hole2 โดยให้ขนาดตามรูป แล้วยังไม่ต้องปิด sketch
- 10. คลิกขวาที่ Equations โฟลเดอร์ 🔊 ใน FeatureManager design tree แล้วเลือก Add Equation
- 11. คลิก-คลิกส่วนฐานเพื่อแสดงตัวเลขบอกขนาด
- 12. ใส่สมการข้างล่างลงไป:

"D1@Sketch6" = "D1@Base-Extrude-Thin" / 3

D1@Sketch6 คือ 40mm เป็นระยะของ sketch

D1@Base-Extrude-Thin คือ 120mm เป็นขนาดของฐาน

หมายเหตุ: ถ้าให้ขนาดระยะ 15mm ก่อนให้ขนาดระยะ 40mm ก็จะได้ตัวบอกขนาด 40mm เป็น

D2@Sketch6

ระยะที่วางจุดกับขอบ *ด้านข้าง* จะห่างเป็นหนึ่งในสามของความยาวตัวบานพับ (120mm)

- คลิก OK เพื่อปิดกล่องข้อความ New Equations และให้สังเกตค่าของคอลัมน์ Evaluates To ในกล่องข้อ ความ Equations
- 14. คลิก OK เพื่อปิดกล่องข้อความ Equations แล้วออกจากการ sketch
- 15. ทำ mirror รูเจาะทั้งหมด:
 - ล) คลิก Mirror Feature ชูลบาร์หรือคลิก
 Insert, Pattern/Mirror, Mirror Feature
 - b) คลิก Plane1 ใน FeatureManager design tree จะมี Plane1 ขึ้นมาในช่อง Mirror plane
 - c) คลิกที่รูเจาะแต่ละอันจากใน FeatureManager design
 tree หรือบน graphics area ก็ได้
 จะมี Hole1 และ Hole2 ขึ้นในช่อง Features to mirror
 - d) คลิก **OK**

สร้าง Layout Sketch สำหรับการตัด (Creating a Layout Sketch for the Cuts)

Layout sketch ที่สร้างในส่วนนี้จะแบ่งความยาวของบานพับออกเป็น 5 ส่วนเท่าๆ กันโดยจะใช้สมการและการ ทำ mirror เพื่อให้ทั้ง 5 ส่วนยังคงเท่ากันในเวลาที่มีการเปลี่ยนความยาวทั้งหมดของตัวบานพับและ layout นี้จะ ถูกใช้สำหรับการ cut ในตอนถัดไป

- 1. เปิด sketch บนหน้ากว้างของโมเดลแล้วให้ชื่อว่า layout for cuts
- คลิกที่ขอบล่างของ sweep feature แล้วคลิก Offset Entities
 ให้ค่า Offset เป็น 1mm แล้วคลิก Reverse ถ้าจำเป็นเพื่อ ให้ได้การ offset *ลงมา* จากขอบที่เลือก ดูว่าไม่มีการเลือก Select chain จากนั้นคลิก Apply และคลิก Close
- กดคีย์ Ctrl ค้างไว้ขณะคลิกที่ขอบ 2 อันที่แสดง แล้วคลิก
 Convert Entities Converted.com

- คลิก Extend โป ใน Sketch Tools ทูลบาร์หรือคลิก
 Tools, Sketch Tools, Extend แล้วคลิกขอบที่ถูก convert
 ทั้ง 2 ข้าง เส้นตั้งแต่ละอันจะถูกต่อออกไปให้เจอกับส่วน
 ของ sketch ที่อยู่ใกล้ที่สุด ในที่นี้คือเส้น offset ในแนวนอน
- 5. Sketch เส้นแนวนอนเพื่อเชื่อมขอบที่ถูก convert พาดทาง ด้านบน
- Sketch เส้นตั้ง 2 เส้นตามรูปแล้วให้ขนาดเส้นทั้ง 2 เส้น ใน การ sketch ต้องไม่ให้มีการอ้างอิงไปที่เรขาคณิตของรูเจาะ และเนื่องจากค่าบอกขนาดตรงนี้จะถูกตั้งโดยสมการดังนั้น การให้ขนาดจึงไม่มีผลอะไรในตอนนี้
- 7. ใส่สมการ:
 - a) คลิกขวาที่ Equations โฟลเดอร์ 🔊 แล้วเลือก Add equation
 - b) ใส่สมการที่ให้ค่าการบอกขนาดแต่ละตัวเป็นหนึ่งในห้าของขนาดความยาวทั้งหมด

"D2@layout for cuts" = "D1@Base-Extrude-Thin" / 5

"D3@layout for cuts" = "D1@Base-Extrude-Thin" / 5

- 8. Sketch เส้น centerline ในแนวตั้งพาดกึ่งกลางของ part จากนั้นกดคีย์ Ctrl ขณะคลิกที่เส้นตั้ง 2 เส้น แล้วคลิก Mirror
 จะได้ Sketch ที่เสร็จและเป็น fully defined
- 9. ออกจากการ sketch

ตัดช่องบานพับ 3 ช่อง (Cutting the Hinge – 3Cuts)

ตอนนี้จะอ้าง sketch ของ layout for cuts มาสร้างช่องตัดชุดแรก เนื่องจากช่องตัดแต่ละอันจะต้องกว้างกว่า แถบที่สอดเข้ามาของบานพับอีกบานเล็กน้อย ตรงนี้จะใช้การ offset จากเส้นต่างๆ ของ layout sketch

- 1. เปิด sketch บนหน้ากว้างของโมเดล
- คลิกที่เส้นด้านล่างของ layout sketch แล้วคลิก Convert Entities (นกล่องข้อความ Resolve Ambiguity ให้คลิก closed contour แล้วคลิก OK ตรงนี้จะเป็นการ copy เส้นรอบนอกมาไว้ใน sketch ที่ กำลังเปิดใช้อยู่
- คลิกที่เส้นตั้งซ้ายสุดใกล้ขอบของ part แล้วคลิก Offset Entities (โห้ค่า Offset เป็น 1mm แล้วคลิก Reverse ถ้าจำเป็นเพื่อให้ offset เส้นเข้ามาทาง *กึ่งกลาง* ของ part ดูว่าไม่ได้เลือก Select chain แล้วคลิก Apply จากนั้นทำกับเส้นตั้งที่อยู่ใกล้ขอบด้านฝั่งตรงข้ามในแบบ เดียวกัน
- คลิกที่เส้นตั้งอันที่ใกล้กับกึ่งกลางของ part แล้ว offset เส้นออกไปทาง ข้างนอก เป็นระยะ 1mm (ทำให้รอยตัด ตรงกลางกว้างขึ้น) แล้วทำแบบเดียวกันนี้กับอีกเส้น หนึ่งด้วย
- 5. คลิก Close เพื่อปิดกล่องข้อความ Offset Entities
- คลิก Trim (พื่อตัดเส้นนอนออกตามที่ชี้ เหลือเป็น รูป 4 เหลี่ยมไว้ 3 อัน
- คลิก Extruded Cut
 หรือ Insert, Cut, Extrude

 โดยคลิก Both Directions แล้วเลือก Type เป็น
 Through All ทั้งสำหรับ Direction1 และ Direction2
- 8. คลิก **OK**
- 9. เปลี่ยนชื่อ cut feature เป็น **3Cuts**
- 10. บันทึกไฟล์

Segments in current sketch

Trim these segments

ตัดช่องบานพับ 2 ช่อง (Cutting the Hinge – 2Cuts)

ตอนนี้จะใช้วิธีเดียวกันสร้างช่องตัดไว้สำหรับตัวบานพับอีกข้าง

- ย้อนการออกแบบกลับไปที่ 3Cuts ด้วยการลากที่ rollback bar กลับไปวางใต้ sketch ของ layout for cuts
- 2. ซ้ำขั้นตอน 1 และ 2 จากในส่วนที่แล้ว
- คลิกเส้นตั้ง 1 เส้นที่อยู่ใกล้ขอบของ part แล้วคลิก
 Offset Entities ให้ค่า Offset เป็น 1mm โดยให้ offset
 ไปทาง ด้านนอก ของ part ดูด้วยว่าไม่มีการเลือก
 Select chain แล้วคลิก Apply จากนั้นทำแบบนี้กับเส้น
 ตั้งที่อยู่ใกล้ขอบอีกด้านของ part ด้วย
- คลิกเส้นตั้งที่อยู่ใกล้ส่วนกลางของ part ให้ offset เป็น 1mm ไปทาง *กึ่งกลาง* ของ part แล้วทำแบบนี้กับอีก เส้นที่เหลืออยู่ด้วย
- 5. คลิก Close เพื่อออกจากกล่องข้อความ Offset Entities
- คลิก Trim I เพื่อตัด 3 ส่วนตรงปลายของแต่ละด้าน และอีก 2 ส่วนตรงกลาง โดยเหลือรูปสี่เหลี่ยมไว้ 2 อัน
- 7. สั่ง Extruded Cut แบบเดียวกับที่อธิบายในส่วนที่ผ่าน มา
- 8. เปลี่ยนชื่อ feature เป็น 2Cuts
- 9. คลิกขวา sketch ชื่อ layout for cuts แล้วเลือก Hide

Segments in current sketch

สร้าง Part Configuration ต่างๆ (Creating the Part Configurations)

เลื่อนขั้นตอนการออกแบบด้วยการลากเลื่อนตัว rollback bar ลงมาจนสุดด้านล่างของ FeatureManager design tree

จะได้ part ที่ทรงกระบอกทั้งอันถูกตัดออกไปหมดจากการใช้ cut feature ทั้ง 2 อัน ลักษณะนี้จะถือเป็นลักษณะ ที่เกิดขึ้นจากค่าปกติ (default configuration) ซึ่งรวม feature ทั้งหมดไว้ ในตอนนี้จะเป็นการทำ part ขึ้นมาอีก 2 อันด้วยการงดใช้ feature ที่เลือก

อันที่ตัดตัวนอก (The OuterCuts configuration)

- 1. คลิกที่แถบ Configuration 底 ล่างสุดของหน้าต่างเพื่อเปลี่ยนไปดู Configuration Manager
- 2. คลิกขวาที่ชื่อ part ส่วนบนของ FeatureManager design tree แล้วเลือก Add Configuration
- ใส่ชื่อ Configuration Name ลงไปเช่น OuterCuts แล้วใส่ Comments (คำบรรยายชิ้นส่วนอันที่กำลังจะ สร้าง) ที่ต้องการแล้วคลิก OK
- คลิกที่แถบ FeatureManager design tree ล่างสุดของหน้าต่างเพื่อเปลี่ยนกลับไปดูที่ FeatureManager
 ให้สังเกตชื่อของ configuration ข้างๆ ชื่อ part ในส่วนบนคือ: hinge (OuterCuts)
- 5. คลิกที่ feature ส่วน 2Cuts แล้วคลิก Suppress 🖭 บน Features ทูลบาร์ หรือคลิก Edit, Suppress ตัว feature ส่วน 2Cuts ขึ้นสีเทาใน FeatureManager design tree และจะไม่ถูกนำมาใช้ใน configuration ที่ใช้อยู่ตอนนี้

อันที่ตัดตัวใน (The InnerCuts configuration)

- 1. ซ้ำข้อ 1 และข้อ 2 จากตอนที่แล้ว
- 2. ใส่ชื่อ Configuration Name ลงในช่องเป็น InnerCuts แล้วคลิก OK
- 3. กลับไปดูที่ FeatureManager ดูที่ชื่อ configuration: hinge (InnerCuts)
- 4. คลิกที่ feature ส่วน 3Cuts แล้วคลิก Suppress 🖭 (ตอนนี้การตัดทั้ง 2 อันจะถูกปิดออกไป)
- 5. คลิกที่ feature ส่วน 2Cuts แล้วคลิก Unsuppress 🗈 บน Features ทูลบาร์ หรือคลิก Edit, Unsuppress ตัว feature ส่วน 3Cuts จะขึ้นสีเทาใน FeatureManager design tree และตัว feature ส่วน 2Cuts จะถูก นำมาใช้ใน configuration นี้
- 6. บันทึกไฟล์

การใส่และจับคู่ Part ต่างๆ ใน Assembly (Inserting and Mating the Parts in an Assembly)

ตอนนี้มาสร้าง assembly

- 1. เปิดไฟล์ assembly ใหม่
- เรียงหน้าต่างแล้วลากบานพับ (hinge) จากส่วนบนใน FeatureManager design tree ของหน้าต่าง part ลงใน หน้าต่างของ assembly อ้างจุด 0,0 ของ assembly ใน ตอนที่วางชิ้นส่วนเพื่อตั้งระนาบของ assembly กับของ ชิ้นงาน
- 3. ขยายหน้าต่าง assembly ให้เต็มที่
- คลิกขวาที่ชิ้นงานแล้วเลือก Component Properties ใต้ ส่วน Referenced configuration ให้ดู Use named configuration จะมี InnerCuts ถูกเลือกเป็นค่าเริ่มต้น นั่นคือ configuration ของ InnerCuts จะถูกนำมาใช้ สำหรับ part ที่ใส่ลงไปในขั้นตอนนี้ ให้คลิก OK เพื่อปิด กล่องข้อความ
- กดคีย์ Ctrl ไว้แล้วลากตัว hinge จากบน graphics area หรือใน FeatureManager design tree มาปล่อยลงข้าง ชิ้นแรกเพื่อสร้างชิ้นส่วนอีกอัน

ใช้ Move Component 🔊 และ Rotate Component Around Axis 🌌 เพื่อหมุนบานพับ – hinge อันที่ 2 ให้ หันหน้าเข้าหาอันแรก

- ในการเปลี่ยน configuration ให้แก้ใน properties ของ
 hinge อันที่ 2 โดยคลิกที่ Use named configuration ให้
 เลือก OuterCuts จากในรายการแล้วคลิก OK
- สร้างการจับคู่แบบ Coincident ระหว่างหน้าแคบของทั้ง
 2 ชิ้นส่วน แล้วให้การจับคู่แบบ Concentric ระหว่างหน้า
 ด้านในของตัวกระบอกของทั้ง 2 ชิ้นส่วน

ตอนนี้สามารถเลื่อนบานพับเปิด-ปิดได้โดยใช้

Move Component

8. บันทึกไฟล์ assembly เป็น **Hinge.sldasm**

สร้าง Part ใหม่ใน Assembly (Creating a New Part in the Assembly)

ตอนนี้มาใส่เข็ม โดยที่ตัวเข็มจะอ้างขนาดจากเส้นผ่านศูนย์กลางด้านในของตัวกระบอกและจากความยาวทั้ง หมดของตัวบานพับ

- 1. คลิก Insert, Component, New ใส่ชื่อของชิ้นส่วนใหม่นี้เป็น Pin.sldprt แล้วคลิก Save
- คลิกที่หน้าแคบทางด้านหน้าของ assembly ตัว part ใหม่จะถูก วางบนหน้านี้ โดยมีที่ตั้งที่กำหนดเป็น fully defined เนื่องจากมี ความสัมพันธ์การจับคู่ในแบบ InPlace อยู่
 ตัว sketch จะถูกเปิดโดยอัตโนมัติบนหน้าที่เลือก จะเห็นว่า
 Edit Part บน Assembly ทูลบาร์จะถูกเลือกและส่วนของ pin จะขึ้นสีชมพูบน FeatureManager design tree
- คลิกที่ขอบวงกลมด้านในของตัวกระบอก แล้ว offset เข้าด้านใน เป็นระยะ 0.25mm
- 4. ออกจากการ sketch

- ขยายส่วนของ pin ใน FeatureManager design tree ให้คลิก
 Plane3 เพื่อเปิด sketch ใหม่ จากนั้นคลิกตรงขอบยาวของตัว
 โมเดล แล้วคลิก Convert Entities
- 6. ออกจากการ sketch

สังเกตว่า part ที่กำลังแก้ไขอยู่จะมีสีชมพูและ Status Bar ตรง มุมขวาล่างบอกว่ากำลังแก้ไข part อยู่

Convert a long edge

ใส่หัวของตัวเข็ม (Adding a Head to the Pin)

ตอนนี้อ้างไปที่ตัวกระบอกของบานพับเพื่อสร้างหัวของตัวเข็ม

- 1. เปิด sketch บนหน้าเรียบของตัวเข็ม แล้ว sketch วงกลมตรงไหนก็ได้
- 2. เลือกวงกลมกับขอบวงกลมนอกของตัวกระบอกแล้วให้ความสัมพันธ์ Coradial
- 3. คลิก Extruded Boss/Base 🗟 ให้ Type เป็น Blind, Depth เป็น 3mm แล้วคลิก OK

- 4. ใส่หัวเข็มเป็นตัวโดม โดยคลิกที่ Dome 🦲 บน Features ทูลบาร์หรือคลิก Insert, Features, Dome
- คลิกที่หน้าเรียบของตัวเข็ม ให้ค่า Height เป็น 3mm ดูรูปตัวอย่าง
 คลิก OK จะได้ตัวเข็มที่เสร็จเรียบร้อย

- 6. คลิกขวาบน graphics area แล้วเลือก Edit Assembly: Hinge หรืออีกวิธีคือให้คลิก Edit Part 题 บน Assembly ทูลบาร์ เพื่อกลับมาที่การแก้ไข assembly
- 7. บันทึกไฟล์ assembly

เปลี่ยนสีของชิ้นส่วน (Changing the Color of a Component)

เพื่อให้ดูง่ายขึ้นจะเปลี่ยนสีของชิ้นส่วนที่อยู่ใน assembly

- คลิกที่ชิ้นส่วนสักอันใน FeatureManager design tree หรือบน graphics area แล้วคลิก Edit Color
- 2. เลือกสีจากจานสีแล้วคลิก OK

แก้ไขชิ้นส่วนของบานพับ (Editing the Hinge Components)

ตอนนี้มาเปลี่ยนขนาดของบานพับตัวนี้

- ใน FeatureManager design tree ขยายชิ้นส่วน hinge อันที่ใช้ InnerCuts configuration คลิก-คลิกที่ Base-Extrude-Thin เพื่อแสดงตัวบอกขนาด
- 2. คลิก-คลิกที่ตัวเลขบอกขนาดสักอัน จะมีกล่องข้อความ Modify ขึ้นมา
- 3. เปลี่ยนขนาดโดยดูว่า All Configurations ถูกเลือกไว้
- คลิก (พื่อปิดกล่องข้อความ Modify
 ถ้าต้องการเปลี่ยนขนาดส่วนอื่นๆ อีกให้ทำซ้ำขั้นตอน 2 ถึง 4
- 5. คลิก Rebuild 🖲 หรือ Edit, Rebuild ทุกๆ ชิ้นส่วนของ assembly จะถูกแก้ใหม่โดยอัตโนมัติ (ถ้ามีข้อ ความบอกข้อผิดพลาดของการ rebuild ตัวเข็มให้คลิก Rebuild 🖲 อีกครั้ง)

