ใบงานที่ 6

เรื่อง การใช้โปรแกรม Tinkercad จำลองการทำงานของหุ่นยนต์ขนาดเล็ก

วัตถุประสงค์ (เพื่อให้นักเรียนษาสามารถ)

- 1. ใช้งานโปรแกรม Tinkercad ต่อวงจรเพื่อจำลองการทำงานของหุ่นยนต์ได้ถูกต้อง
- 2. ทดสอบการจำลองการทำงานของหุ่นยนต์โดยใช้โปแกรม Tinkercad ได้ถูกต้อง
- 3. บันทึกผลการทดลองได้ถูกต้อง
- 4. สรุปผลการทดลองได้ตามวัตถุประสงค์

เครื่องมือและอุปกรณ์

1. คอมพิวเตอร์

จำนวน 1 เครื่อง

<u>ทฤษฎีเบื้องต้น</u>

6.1 บอร์ดไมโครคอนโทรลเลอร์ Arduino UNO

รูปที่ 6.1 ส่วนประกอบของ Arduino Uno R3

6.1.1 ส่วนประกอบของบอร์ด Arduino UNO

- USB Port : ใช้สำหรับต่อกับ Computer เพื่ออับโหลดโปรแกรมให้ MCU และจ่ายไฟให้กับ บอร์ด Arduino
- 2. Reset Button : เป็นปุ่ม Reset ใช้กดเมื่อต้องการให้ MCU เริ่มการทำงานใหม่

- ICSP Port : ของ Atmega16U2 เป็นพอร์ตที่ใช้โปรแกรม Visual Com port บน Atmega16U2
- 4. **I/O Port** : Digital I/O ตั้งแต่ขา D0 ถึง D13 นอกจากนี้ บาง Pin จะทำหน้าที่อื่นๆ เพิ่มเติม ด้วย เช่น Pin0,1 เป็นขา Tx,Rx Serial, Pin 3, 5, 6, 9, 10 และ 11 เป็นขา PWM
- 5. ICSP Port : Atmega328 เป็นพอร์ตที่ใช้โปรแกรม Bootloader
- 6. **MCU** : Atmega328 เป็น MCU ที่ใช้บนบอร์ด Arduino
- 7. I/O Port : นอกจากจะเป็น Digital I/O แล้ว ยังเปลี่ยนเป็น ช่องรับสัญญาณอนาล็อก
- Power Port : ไฟเลี้ยงของบอร์ดเมื่อต้องการจ่ายไฟให้กับวงจรภายนอก ประกอบด้วยขา ไฟเลี้ยง +3.3 V, +5V, GND, V_{in}
- 9. Power Jack : รับไฟจาก Adapter โดยที่แรงดันอยู่ระหว่าง 7-12 V
- 10. **MCU Atmega16U2** : เป็น MCU ที่ทำหน้าที่เป็น USB to Serial โดย Atmega328 จะ ติดต่อกับ Computer ผ่านAtmega16U2

ไมโครคอนโทรลเลอร์	ATmega328
แหล่งจ่ายไฟ	5 V
ไฟเข้าจำกัดไว้ที่	6-20 V
ขาดิจิตอล I/O	14 ขา (PWM 6 ขา)
ขาแอนาล็อก	6 ขา
กระแสไฟฟ้า DC ต่อเข้าขา I/O	40 mA
กระแสไฟฟ้าออก DC จากขา 3.3 V	50 mA
Flash Memory (0.5KB for boot loader)	32КВ
EEPROM	1KB
Clock Speed	16Mhz

6.1.2 ข้อมูลเฉพาะ Arduino Uno R3

ขั้นตอนการทดลอง

การทดลองที่ 1 การเริ่มต้นใช้งานโปรแกรม Tinkercad

1.1 เข้าสู่เว็บไซต์ www.tinkercad.com แล้วทำการล็อกอินเข้าสู่ระบบโดยใช้ Gmail ของ นักเรียน

รูปที่ 6.2 คลิกที่ Sign in เพื่อเข้าสู่ระบบ

IKERCAD'					
	Welcome back How will you sign in?				
	Students, join your class				
	\Lambda Email or Username				
	G Sign in with Google				
	Sign in with Apple				
	Don't have an account yet? Join Tinkercad				
Privacy settings					

รูปที่ 6.3 คลิกที่ Sign in with Google เพื่อเข้าสู่ระบบโดยใช้ Gmail

1.2 เลือก Circuit และเลือก Create new circuit เพื่อสร้างวงจรใหม่

รูปที่ 6.4 คลิกที่ Create new circuit เพื่อสร้างวงจรใหม่

- 1.3 เลือกอุปกรณ์แถบด้านขวามือและต่อวงจรตามรูปที่ 4

ร**ูปที่ 6.5** การต่อใช้งานหลอด Led กับบอร์ด Arduino

1.6 คลิกที่ปุ่ม Code บริเวณมุมบนขวามือเพื่อทดลองเขียนโปรแกรม

รูปที่ 6.6 คลิกที่ปุ่ม Code เพื่อทดลองเขียนโปรแกรม

1.5 เขียนโปรแกรมตามโค้ดตัวอย่างที่กำหนดให้ดังนี้

```
1 void setup(){
2   pinMode(13, OUTPUT);
3 }
4
5 void loop(){
6   digitalWrite(13, HIGH);
7   delay(1000);
8   digitalWrite(13, LOW);
9   delay(1000);
10 }
```

1.6 เมื่อพิมพ์โค้ดเสร็จสิ้น ให้รันโปรแกรมโดยการกด Start Simulation

บันทึกผลการทดลองจากการสังเกตหลอดไฟ LED

การทดลองที่ 2 การต่อวงจรใช้งานสวิตช์ร่วมกับไมโครคอนโทรลเลอร์ Arduino

2.1 ย้อนกลับไปหน้าหลักของโปรแกรม Tinkercad และกด Create New Circuit เพื่อสร้าง วงจรใหม่

2.2 เลือกอุปกรณ์แถบด้านขวามือและต่อวงจรตามรูปที่ 6

รูปที่ 6.7 การต่อวงจรใช้งานสวิตช์ร่วมกับ Arduino

2.3 เขียนโปรแกรมตามโค้ดตัวอย่างที่กำหนดให้ดังนี้

```
void setup() {
  for (byte index = 4; index <= 11; index++)</pre>
   pinMode(index, OUTPUT);
 pinMode(2, INPUT);
  pinMode(3, INPUT);
void loop() {
 if (digitalRead(2) == HIGH) {
   digitalWrite(4, LOW);
   digitalWrite(5, LOW);
   digitalWrite(6, LOW);
   digitalWrite(7, LOW);
   digitalWrite(8, HIGH);
   digitalWrite(9, HIGH);
   digitalWrite(10, HIGH);
    digitalWrite(11, HIGH);
  }
```

```
else if (digitalRead(3) == HIGH) {
  digitalWrite(4, HIGH);
  digitalWrite(5, HIGH);
  digitalWrite(6, HIGH);
  digitalWrite(7, HIGH);
  digitalWrite(8, LOW);
  digitalWrite(9, LOW);
  digitalWrite(10, LOW);
  digitalWrite(11, LOW);
}
else {
  digitalWrite(4, LOW);
  digitalWrite(5, LOW);
  digitalWrite(6, LOW);
  digitalWrite(7, LOW);
  digitalWrite(8, LOW);
  digitalWrite(9, LOW);
  digitalWrite(10, LOW);
  digitalWrite(11, LOW);
}
```

2.4 เมื่อพิมพ์โค้ดเสร็จสิ้น ให้รันโปรแกรมโดยการกด Start Simulation

บันทึกผลการทดลองจากการทดลองกด SW1 และ SW2 และสังเกตหลอดไฟ LED

การทดลองที่ 3 การต่อวงจรควบคุมมอเตอร์โดยใช้ไมโครคอนโทรลเลอร์ Arduino

3.1 ย้อนกลับไปหน้าหลักของโปรแกรม Tinkercad และกด Create New Circuit เพื่อสร้าง วงจรใหม่

3.2 เลือกอุปกรณ์แถบด้านขวามือและต่อวงจรตามรูปที่ 6.8 **(แรงดันของแหล่งจ่ายเท่ากับ**

7.4V)

รูปที่ 6.8 การต่อวงจรใช้งานสวิตช์ร่วมกับ Arduino

3.3 เขียนโปรแกรมตามโค้ดตัวอย่างที่กำหนดให้ดังนี้

3.4 เมื่อพิมพ์โค้ดเสร็จสิ้น ให้รันโปรแกรมโดยการกด Start Simulation

บันทึกผลการทดลองจากการสังเกตการทำงานของมอเตอร์ครั้งที่ 1

3.5 กด Stop Simulation และทดลองแก้ไขคำสั่งบรรทัดที่ 12 และ 13 ดังนี้

- บรรทัดที่ 12 เปลี่ยนสถานะจาก HIGH เป็น LOW
- บรรทัดที่ 12 เปลี่ยนสถานะจาก LOW เป็น HIGH

เมื่อแก้ไขเสร็จให้รันโปรแกรมโดยการกด Start Simulation

บันทึกผลการทดลองจากการสังเกตการทำงานของมอเตอร์ครั้งที่ 2

3.6 แก้ไขวงจรเดิม โดยการเพิ่มสวิตช์ 2 ตัว ตามตัวอย่างดังรูปที่ 6.9

3.7 เขียนโปรแกรมตามโค้ดตัวอย่างที่กำหนดให้ดังนี้

```
1 #define MotorPinA 2
2 #define MotorPinB 4
3 #define SpeedPin 3
4 #define SWRight
                     8
5 #define SWLeft
                     9
6
7 void setup() {
8
   pinMode (MotorPinA, OUTPUT);
9
    pinMode (MotorPinB, OUTPUT);
   pinMode (SpeedPin, OUTPUT);
10
11
    pinMode (SWRight, INPUT);
12
    pinMode(SWLeft, INPUT);
13 }
14
15 void loop () {
    if (digitalRead(SWLeft) == HIGH) {
16
17
      digitalWrite (MotorPinA, HIGH);
18
      digitalWrite (MotorPinB, LOW);
19
      analogWrite (SpeedPin, 255);
20
    }
21
    else if (digitalRead(SWRight) == HIGH) {
22
      digitalWrite (MotorPinA, LOW);
23
      digitalWrite (MotorPinB, HIGH);
24
      analogWrite(SpeedPin, 255);
25
    }
26
    else {
27
      digitalWrite (MotorPinA, HIGH);
      digitalWrite (MotorPinB, HIGH);
28
29
      analogWrite(SpeedPin, 0);
30
    }
31 }
```

3.8 เมื่อพิมพ์โค้ดเสร็จสิ้น ให้รันโปรแกรมโดยการกด Start Simulation

บันทึกผลการทดลองจากการทดลองกด SW1 และ SW2 และสังเกตการทำงานของมอเตอร์

สรุปผลการทดลอง

•••••	•••••	 •••••			•••••	•••••	 •••••	 	•••••
•••••	•••••	 •••••	•••••		•••••	•••••	 •••••	 	•••••
		 •••••			•••••	•••••	 	 	
	•••••	 •••••			•••••	•••••	 •••••	 	
•••••	•••••	 			•••••	•••••	 •••••	 	•••••
		 			•••••	•••••	 	 	
		 			•••••	•••••	 •••••	 	
	•••••	 •••••		•••••	•••••	•••••	 	 	
•••••		 			•••••	•••••	 •••••	 	
••••		 •••••		• • • • • • • • • •	••••	•••••	 	 	