

Force System

Essence

Force is the essence of engineering mechanics. Knowledge of force systems is a necessary basis for further advanced studies of mechanics, such as structural analysis. Stress analysis Force is a type of vector. which must determine both size and direction The combination of forces cannot therefore be done in ordinary algebra. In this unit, we study the nature of various combinations of forces. Both in the plane and in the spatial system.
(1) Scalar and vector quantities
2. Combination of forces in a plane
(4) Combining the x-axis and y-axis forces
(3) Separation force

Unit performance

(1) Shows finding the force in the axial direction x axial y of the given
(2) ForceCalculate the net force of a given force.

(1) Explain the meaning of scalars and vectors. (4) Calculate the total force from the sub-forces in
(2) Find the total force in the plane. the $x-y$ plane.
(3) Calculate the force by components the force.
(5) Calculate forces in spatial systems.

There are two types of quantities involved in statistics: scalar quantities and vector quantities.

Scalars are quantities that have specific dimensions, such as length, mass, and time.
A vector is a quantity that has both magnitude and direction, such as force, acceleration, and moment.

Vector quantities can be divided into 3 types:

- Free vector (Free Vector) is a vector that tells the size and direction.
- Sliding Vector is a vector that is horizontal along a stationary line.

A fixed vector (Fixed Vector) is a vector whose magnitude and direction are determined. Including exact point of action

Vector basic knowledge

1. Vectors can be written with arrow signs. The arrowhead indicates the direction of the vector.
2. Multiplying or dividing vectors by scalars A vector increases or decreases in size by the scalar quantity multiplied by the vector. The vector remains in the same direction when the scalar quantity is positive and switches directions when the scalar quantity is negative.

Vector basic knowledge

3. Vector integration begins by joining the tails of the two vectors together. Then draw a line parallel to the two forces. The intersection point of the parallel lines is at the point P The resultant vector R is formed by drawing a line from the connecting point of the two vectors to the point P, that is, $\vec{R}=\vec{A}+\vec{B}$.

Vector basic knowledge

Additionally, vectors can be combined using the triangle rule. It is a vector B combined with vector A According to the principle of "Head-to-Tail"In conclusion, it can be concluded that $R=A+B=B+A$

Vector subtraction section The same method applies to combining normal vectors. different that change the direction of the vector $\vec{R}=\vec{A}=\vec{B}=\vec{A}+(-\vec{B})$

Vector basic knowledge

In the case of wanting to combine 3 or more vectors. For example, there is a vector P Q and S Combine the first two vectors first, then add the result to the next vector.

Force is a vector quantity. The result of the action of a force depends on both the size and the direction in which the force acts on the object. Force tries to cause an object to change or move.

- Magnitude indicates the amount of force. Its unit is Newton (N).
- Direction describes the direction of the applied force by measuring the line of force with a reference axis.

Combination of forces in a plane

An example image is a force acting.Connect the hook to lift weights.

Force is considered a vector. This is because forces
have both magnitude and direction. Calculation of net force follows the law of vector integration.

A cargo ship has 2 tug boats as shown. If the net force of these 2 boats is 5 kilonewtons and has the same direction as the cargo ship, calculate.
a) The tensile force in both ropes when $\alpha=45^{\circ}$
b) The value of α When the tensile force in the second rope is the least.

Solution

a) Finding the tension in a rope This can be done by drawing a figure using the parallelogram rule and calculating from trigonometry as follows.

Solution

b) Fine α When the tension on the second rope is the least using the triangle rule. Start by drawing lines 1-1 represents the line of tension in the rope1 $\left(T_{1}\right)$ Line of tension in a rope T_{2} (2-2) There can be many lines. But the shortest line is The line that creates the minimum pulling force. That's the line.1-1 กับ 2-2 Perpendicular to each other, so T_{2} Can be calculated as follows:

$$
\begin{aligned}
& \mathrm{T}_{2}=(5 \mathrm{kN}) \sin 30^{\circ}=2.5 \mathrm{kN} \\
& \mathrm{~T}_{1}=(5 \mathrm{kN}) \cos 30^{\circ}=4.33 \mathrm{kN} \\
& \alpha=90^{\circ}-30^{\circ}=60^{\circ}
\end{aligned}
$$

Rectangle components

In solving problems in some cases, it is necessary to use the rectangle components. method. Force F resolved into a component x - y axis It is called the Rectangle components in the x-y axis. $\left(F_{x}\right),\left(F_{y}\right)$ Accordingly, this force break is drawn using a ectangular drawing

Where θ is the angle that force F acts on the
x-axis.

$$
\begin{aligned}
& \mathrm{F}_{\mathrm{x}}=\mathrm{F} \cos \theta \\
& \mathrm{~F}_{\mathrm{y}}=\mathrm{F} \sin \theta
\end{aligned}
$$

$$
\begin{aligned}
& \tan \theta=\frac{\mathrm{F}_{\mathrm{x}}}{\mathrm{~F}_{\mathrm{y}}} \\
& \mathrm{~F}=\sqrt{\mathrm{F}_{\mathrm{x}}+\mathrm{F}_{\mathrm{y}}^{2}}
\end{aligned}
$$

There is a force of 800 newtons acting on pin A as shown. Calculate the force in the x-axis and y-axis

Solution

$$
\begin{aligned}
F_{x} & =-F \cos \alpha \\
& =-(800 \mathrm{~N}) \cos 35^{\circ} \\
& =-655 \mathrm{~N}
\end{aligned}
$$

$$
F_{y}=+F \sin \alpha
$$

$$
=+(800 \mathrm{~N}) \sin 35^{\circ}
$$

$$
=+459 \mathrm{~N}
$$

Addition the x -axis and y -axis forces

There are 3 forces, P Q S, acting on point A (a). To combine these 3 forces, start by breaking each force. It is released as a force in the x-axis and y-axis (b).

(a)

(b)
$R_{x}=P_{x}+Q_{x}+S_{x}$
$R_{y}=P_{y}+Q_{y}+S_{y}$
Or it can be written that
$\mathrm{R}_{\mathrm{X}}=\sum \mathrm{F}_{\mathrm{x}}$
$R_{y}=\sum F_{y}$

Rectangular components the x-axis and y-axis forces

Total force in the x axis and the y axis as shown (c).
(d)

Find the total force R using the parallelogram rule. The total force R is shown in figure (d).

There are 4 forces acting on pin A as shown. Divide the net force acting on pin A.

Solution

Calculate the partial force along the x -axis and y -axis of each force. The force is positive or negative depending on the axial direction.

That is, the force along the x axis is positive when the force is directed to the right. The force along the y axis is positive in the upward direction.

Sample Problem

The component forces of each force are shown in the table.

Force	Magnitude (N)	x Component (N)	y Component (N)
F_{1}	150	+129.9	+75.0
$\mathrm{~F}_{2}$	80	-27.4	+75.2
$\mathrm{~F}_{3}$	110	0	-110.0
$\mathrm{~F}_{4}$	100	+96.6	-25.9
			$\mathrm{R}_{\mathrm{x}}=+199.1$
			$\mathrm{R}_{\mathrm{y}}=+14.3$

Solution

$$
\begin{aligned}
& \text { Resultant R }=\sqrt{R_{x}^{2}+R_{y}^{2}} \\
&=\sqrt{(+199.1)^{2}+(+14.3)^{2}} \\
&=199.6 \mathrm{~N} \\
&=\frac{R_{y}}{R_{x}}=\frac{14.3 \mathrm{~N}}{199.1 \mathrm{~N}} \\
& \tan \theta=4.1^{\circ} \\
& \alpha \text { result of force } 199.6 \mathrm{NZ} 4^{\circ}
\end{aligned}
$$

Force in three dimensional space

A force F resolved into retangular components $\mathrm{F}_{\mathrm{x}} \mathrm{F}_{\mathrm{y}}$ and F_{z} we have

$F=\sqrt{F_{x}^{2}+F_{y}^{2}+F_{z}^{2}}$
$\mathrm{F}_{\mathrm{x}}=\mathrm{F} \cos \theta_{x} \quad \mathrm{~F}_{\mathrm{y}}=\mathrm{F} \cos \theta_{y}$
$\cos ^{2} \theta_{x}+\cos ^{2} \theta_{y}+\cos ^{2} \theta_{z}=1$

When the angle $\theta_{x} \theta_{y}$ และ θ_{z} is the angle that the force F acts on the x, y, and z axes, respectively.

Sample poblem

Force F magnitude 500 N act angle $60^{\circ} 45^{\circ}$ and 120° with the axis x and the axisz y and the axis $z \ln$ order, calculate $F_{x} F_{y}$ and F_{z}

Solution

From the question, know that $F=500 \mathrm{~N}$

$$
\begin{aligned}
& \text { and } \theta_{x}=60^{\circ} \theta_{y}=45^{\circ} \text { and } \theta_{z}=120^{\circ} \\
& \mathrm{F}_{\mathrm{x}}=(500 \mathrm{~N}) \cos 60^{\circ}=+250 \mathrm{~N} \\
& \mathrm{~F}_{\mathrm{y}}=(500 \mathrm{~N}) \cos 45^{\circ} \quad=+354 \mathrm{~N} \\
& \mathrm{~F}_{\mathrm{z}}=(500 \mathrm{~N}) \cos 120^{\circ} \quad=-250 \mathrm{~N}
\end{aligned}
$$

