ชื่องาน ทดสอบ GPIO

ขั้นตอนการทำงาน

- 1. เพิ่มบอร์ดลงในโปรแกรม Arduino IDE
 - 1.1. ไปที่เมนู File > Preferences

1.2. ที่ช่อง Additional Boards Manager URLs เพิ่มคำว่า

http://arduino.esp8266.com/stable/package_esp8266com_index.json

1.3. เพิ่มบอร์ดที่เมนู Tools > Board > Board Manager...

1.4. พิมพ์ค้นหาคำว่า esp8266 แล้วกดปุ่ม Install

- ติดตั้งไดรเวอร์ CP2102 และ CH340 แนะนำให้ลง 2 ตัวพร้อมกันเลยจะได้สะดวก ใช้ได้กับ NodeMCU ทุก รุ่น ดาวน์โหลดไดรเวอร์ที่นี่ <u>https://www.arduinoall.net/arduino-tutor/code/DriverNodeMCU.rar</u>
- เสียบบอร์ด NodeMCU เข้ากับเครื่องคอม เลือกบอร์ด NodeMCU 1.0(ESP-12E Module) และ Com port ให้ถูกต้อง

 ที่ Upload Speed คือความเร็วในการส่งข้อมูล ยิ่งค่ามากยิ่งอัพโหลดเสร็จเร็ว เราสามารถเลือกเป็นค่า 921600 ได้เลย แต่บางกรณีอาจมีสัญญาณรบกวน ทำให้อัพโหลดไม่สำเร็จ ก็ให้ลองปรับมาเป็นค่าต่ำลง เช่น 115200 แทน

5. อัพโหลดโค้ด Arduino ตัวอย่างนี้ แล้วดูผลลัพธ์

```
void setup() {
  Serial.begin(9600);
  pinMode(2, OUTPUT);
  pinMode(LED_BUILTIN, OUTPUT);
}
```

void loop() {
 Serial.println("ArduinoAll TESTED");
 digitalWrite(2, 0);
 digitalWrite(LED_BUILTIN, LOW);
 delay(1000);
 digitalWrite(LED_BUILTIN, HIGH);
 digitalWrite(2, 1);
 delay(1000);
}

ชื่องาน งานควบคุมอุปกรณ์ output เปิดปิดไฟ LED

ใบความรู้

คำสั่ง Digital Write

เป็นคำสั่งที่ใช้กำหนดสัญญาณ HIGH LOW ของขาดิจิตอลของ NodeMCU ESP8266 HIGH คือลอจิก 1 ปล่อยไฟออกแรงดัน 5V LOW คือลอจิก 0 กำหนดขานั้นให้เป็นกราว์ด 0V digitalWrite(PiN,Status) PiN หมายถึง ขา Digital ของ NodeMCU ESp8266 ที่จะสั่งงาน ให้เป็น HIGH หรือ LOW Status หมายถึง สถานะ HIGH หรือ LOW

ตัวอย่างคำสั่ง Digital Write

ต้องการให้ขา Digital ขา D0 เป็นสถานะ HIGH digitalWrite(D0,HIGH)

คำสั่ง pinMode(led1, status); เป็นคำสั่งกำหนดการทำงานของขา led1 คือ ขาที่ต้องการกำหนดสถานะการทำงาน status คือ สถานะการทำงาน มี Input อ่านค่าสถานะลอจิกขานั้น และ Output ปล่อยสัญญาณลอจิก 1 0

ตัวอย่างคำสั่ง pinMode(led1, status);

ต้องการให้ขา Digital ขา D0 เป็น Output ปล่อยสัญญาณดิจิตอล 1 0 HIGH LOW pinMode**(D0, Output);**

ขั้นตอนการทำงาน

1. ออกแบบการเชื่อต่อวงจรตามโจทย์กำหนดให้

2. ต่อวงจรระหว่าง NodeMCU ตัวต้านทาน LED ลงบน Breadboard ตามที่ออกแบบไว้

3. เสียบบอร์ด NodeMCU เข้ากับเครื่องคอม เลือกบอร์ด และ Comport

int LEDD0 = D0; // ขา D0
int LEDD1 = D1; // ขา D1
int LEDD2 = D2; // ขา D2
int LEDD3 = D3; // ขา D3
int LEDD4 = D4; // ขา D4
void setup() {
pinMode(LEDD0, OUTPUT); // กำหนดการทำงานของขา D0 ให้เป็น Output
pinMode(LEDD1, OUTPUT);
pinMode(LEDD2, OUTPUT);

```
pinMode(LEDD3, OUTPUT);
 pinMode(LEDD4, OUTPUT);
 digitalWrite(LEDD0, LOW);
 digitalWrite(LEDD1, LOW);
 digitalWrite(LEDD2, LOW);
 digitalWrite(LEDD3, LOW);
 digitalWrite(LEDD4, LOW);
}
void loop()
{
 digitalWrite(LEDD0, HIGH); // สั่งให้ ขา D0 ปล่อยลอจิก 1 ไฟ LED ติด
 delay(50); // หน่วงเวลา 50mS
 digitalWrite(LEDD1, HIGH); // สั่งให้ ขา D1 ปล่อยลอจิก 1 ไฟ LED ติด
 delay(50);
 digitalWrite(LEDD2, HIGH); // สั่งให้ ขา D2 ปล่อยลอจิก 1 ไฟ LED ติด
 delay(50);
 digitalWrite(LEDD3, HIGH); // สั่งให้ ขา D3 ปล่อยลอจิก 1 ไฟ LED ติด
 delay(50);
 digitalWrite(LEDD4, HIGH); // สั่งให้ ขา D4 ปล่อยลอจิก 1 ไฟ LED ติด
 delay(50);
 digitalWrite(LEDD0, LOW); // สั่งให้ ขา D0 ปล่อยลอจิก 0 ไฟ LED ดับ
 delay(50);
 digitalWrite(LEDD1, LOW); // สั่งให้ ขา D1 ปล่อยลอจิก 0 ไฟ LED ดับ
 delay(50);
 digitalWrite(LEDD2, LOW); // สั่งให้ ขา D2 ปล่อยลอจิก 0 ไฟ LED ดับ
 delay(50);
 digitalWrite(LEDD3, LOW); // สั่งให้ ขา D3 ปล่อยลอจิก 0 ไฟ LED ดับ
 delay(50);
 digitalWrite(LEDD4, LOW); // สั่งให้ ขา D4 ปล่อยลอจิก 0 ไฟ LED ดับ
 delay(50);
```

ใบงาน ชื่องาน งานควบคุมอุปกรณ์ output เปิดปิดไฟบ้าน ด้วย Relay Module

วิชา 20901-9203 ชื่อวิชา การอินเทอร์เฟสในระบบสมองกลฝังตัวและไอโอที

ใบความรู้

Relay Module -> NodeMCU ESP8266

- gnd -> GND
- Vcc -> 5V
- In-> ขาD0

ขั้นตอนการทำงาน

5. ออกแบบการเชื่อต่อวงจรตามโจทย์กำหนดให้

6. ต่อวงจรระหว่าง NodeMCU ตัวต้านทาน LED ลงบน Breadboard ตามที่ออกแบบไว้

7. เสียบบอร์ด NodeMCU เข้ากับเครื่องคอม เลือกบอร์ด และ Comport

ชื่องาน งานควบคุมอุปกรณ์ output แสดงผลออกจอ LCD 1602 แบบ I2C

วิชา 20901-9203 ชื่อวิชา การอินเทอร์เฟสในระบบสมองกลฝังตัวและไอโอที

ใบความรู้ จอแสดงผล LCD 1602 ตัวที่ 1 -> NodeMCU ESP8266

- gnd -> GND
- Vcc -> 5V
- SDA -> ขาD2 (NodeMCU ESP8266)
- SCL -> บาD1 (NodeMCU ESP8266)

จอแสดงผล LCD 1602 ตัวที่ 2 -> NodeMCU ESP8266

- gnd -> GND
- Vcc -> 5V
- SDA -> ขาD2 (NodeMCU ESP8266)
- SCL -> บาD1 (NodeMCU ESP8266)
- ٠

ขั้นตอนการทำงาน

9. ออกแบบการเชื่อต่อวงจรตามโจทย์กำหนดให้

10.ต่อวงจรระหว่าง NodeMCU ลงบน Breadboard ตามที่ออกแบบไว้

11.เสียบบอร์ด NodeMCU เข้ากับเครื่องคอม เลือกบอร์ด และ Comport


```
void LCD1() {
 LiquidCrystal_I2C lcd(0x27, 16, 2); //เลือก Address จอ LCD ที่จะเขียนข้อความ
 lcd.begin();
 lcd.setCursor(0, 0); // กำหนดให้ เคอร์เซอร์ อยู่ตัวอักษรตำแหน่งที่0 แถวที่ 1 เตรียม
พิมพ์ข้อความ
 lcd.print("LCD1602 I2c No1"); //พิมพ์ข้อความ "LCD1602 I2c No1"
 lcd.setCursor(2, 1); // กำหนดให้ เคอร์เซอร์ อยู่ตัวอักษรกำแหน่งที3 แถวที่ 2 เตรียม
พิมพ์ข้อความ
 lcd.print("myarduino.net"); //พิมพ์ข้อความ "myarduino.net"
}
void LCD2() {
 LiquidCrystal_I2C lcd(0x26, 16, 2); //เลือก Address จอ LCD ที่จะเขียนข้อความ
 lcd.begin();
 lcd.setCursor(0, 0); // กำหนดให้ เคอร์เซอร์ อยู่ตัวอักษรตำแหน่งที่0 แถวที่ 1 เตรียม
พิมพ์ข้อความ
 lcd.print("LCD1602 I2c No2"); //พิมพ์ข้อความ "LCD1602 I2c No2"
 lcd.setCursor(2, 1); // กำหนดให้ เคอร์เซอร์ อยู่ตัวอักษรกำแหน่งที3 แถวที่ 2 เตรียม
พิมพ์ข้อความ
 lcd.print("myarduino.net"); //พิมพ์ข้อความ "myarduino.net"
```

ใบงาน ชื่องาน งานควบคุมอุปกรณ์ input กดปุ่มสวิตช์ ควบคุมเปิดปิดหลอดไฟ LED

วิชา 20901-9203 ชื่อวิชา การอินเทอร์เฟสในระบบสมองกลฝังตัวและไอโอที

ใบความรู้

การต่อสวิ๊ตช์มี 2 แบบ คือ pull up โดยจ่ายสัญญาณ 1 ให้กับสวิตช์ อีกแบบคือ pull down โดยจ่ายสัญญาณ 0 ให้กับสวิตช์ โดยผ่านตัวต้านทานเพื่อใช้คงค่าสถานะ ป้องกันไฟ 5V และ 0V ชนกันลัดวงจร

การต่อสวิตช์มี 2 แบบคือ

1. Pull UP คือการคงค่าสัญญาณ 1 ให้กับขา Digital Arduino ที่มาต่อกับสวิตช์ เมื่อสวิตช์ถูกกดจะให้สัญญาณ 0

2. Pull Down คือ การคงค่าสัญญาณ 0 ให้กับขา Digital Arduino ที่มาต่อกับสวิตช์ เมื่อสวิตช์ถูกกดจะให้ สัญญาณ 1

คำสั่ง Digital Read เป็นคำสั่งที่ใช้อ่าค่าสถานะขาดิจิตอลของ Arduino ว่าเป็น 5V หรือ 0V HIGH คือลอจิก 1 ปล่อยไฟออกแรงดัน 5V LOW คือลอจิก 0 กำหนดขานั้นให้เป็นกราว์ด 0V digitalRead(PiN) PiN หมายถึง ขา Digital ของ Arduino ที่ต้องการอ่าน

ตัวอย่างคำสั่ง Digital Read

ต้องการอ่านค่า สถานะขา 13 ว่าเป็น 1 หรือ 0 เก็บในตัวแปล Val Val = digitalRead(13)

ขั้นตอนการทำงาน

1. ออกแบบการเชื่อต่อวงจรตามโจทย์กำหนดให้

2. ต่อวงจรระหว่าง NodeMCU ลงบน Breadboard ตามที่ออกแบบไว้

2. เสียบบอร์ด NodeMCU เข้ากับเครื่องคอม เลือกบอร์ด และ Comport


```
int led1 = D0; // กำหนดขาใช้งาน
int buttonPin = D1;
int buttonState = 0;
void setup()
{
 pinMode(led1, OUTPUT); // กำหนดขาทำหน้าที่ให้ขา D0 เป็น OUTPUT
 pinMode(buttonPin, INPUT);// กำหนดขาทำหน้าที่ให้ขา D1 เป็น INPUT รับค่า
จากสวิตช์
 digitalWrite(led1, LOW);
 Serial.begin(9600);
}
void loop()
{
 buttonState = digitalRead(buttonPin); // อ่านค่าสถานะขาD0
 if (buttonState == HIGH) { //กำหนดเงื่อนไขถ้าตัวแปล buttonState เก็บ ค่า
1(HIGH) ให้ทำในปีกกา
  digitalWrite(led1, HIGH); // ไฟ LED 1ติด
  Serial.print("LED : ");
  Serial.println(buttonState);
 }
 else { //ถ้าตัวแปล buttonState ไม่ได้เก็บ ค่า 1(HIGH) คือ ตัวแปล buttonState
เก็บค่า 0(LOW) อยู่ ให้ทำปีกกาข้างล่าง
  digitalWrite(led1, LOW); // ไฟ LED 1ดับ
  Serial.print("LED : ");
  Serial.println(buttonState);
 }
```

ชื่องาน งานควบคุมอุปกรณ์ input วัดอุณหภมูิและความชื้นด้วย Sensor DHT11

วิชา 20901-9203 ชื่อวิชา การอินเทอร์เฟสในระบบสมองกลฝังตัวและไอโอที

ใบความรู้

NodeMCU ESP8266 -> Sensor DHT11 วัดอุณหภูมิและความชื้น

- 5V -> ขา1
- GND -> ขา4
- ขาD4 = GPIO 2 -> ขา2

โหลด Library Sensor วัดอุภณหมูิและความชื้น DHT11 ติดตั้งในโปรแกรม Arduino IDE

• <u>http://www.mediafire.com/download/6qh8q1g0kmokl4g/DHT11.rar</u>

วิธีลง Library

• <u>สอนใช้งาน NodeMCU ESP8266 ติดตั้ง Library ในโปรแกรม Arduino IDE เชื่อมต่อกับ Sensor ต่างๆ</u>

ขั้นตอนการทำงาน

13.ออกแบบการเชื่อต่อวงจรตามโจทย์กำหนดให้

2. ต่อวงจรระหว่าง NodeMCU ลงบน Breadboard ตามที่ออกแบบไว้

14.เสียบบอร์ด NodeMCU เข้ากับเครื่องคอม เลือกบอร์ด และ Comport

#include "DHT.h"
DHT dht;
void setup()
{
Serial.begin(9600);
Serial.println();
Serial.println("Status\tHumidity (%)\tTemperature (C)\t(F)");
dht.setup(2); // data pin 2

```
}
void loop()
{
delay(dht.getMinimumSamplingPeriod());
float humidity = dht.getHumidity(); // ดึงค่าความซื้น
float temperature = dht.getTemperature(); // ดึงค่าอุณหภูมิ
Serial.print(dht.getStatusString());
Serial.print(dht.getStatusString());
Serial.print("\t\");
Serial.print(humidity, 1);
Serial.print(temperature, 1);
Serial.print(temperature, 1);
Serial.print(dht.toFahrenheit(temperature), 1);
delay(1000);
```

1			Se	nd
Status	Humidity (%)	Temperature (C)	(F)	
OK	48.0	26.0	78.8	
OK	49.0	25.0	77.0	
OK	49.0	25.0	77.0	
OK	49.0	25.0	77.0	
OK	49.0	25.0	77.0	
OK	49.0	25.0	77.0	111
			Gr	r .
			VSDUINC	

้ชื่องาน งานควบคุมอุปกรณ์ input วัดความเข้มแสงด้วยเซ็นเซอร์ LDR

วิชา 20901-9203 ชื่อวิชา การอินเทอร์เฟสในระบบสมองกลฝังตัวและไอโอที

ใบความรู้

เชื่อมต่ออุปกรณ์ตามด้านล่าง NodeMCU ESP8266 -> หลอดไฟ LED • ขา2 -> LED • ขา3 -> LED NodeMCU ESP8266 -> เซนเซอร์วัดความสว่างความเข้มแสง LDR Photoresistor Sensor Module • A5 -> A0 • 5V -> VCC

• GND -> GND

ขั้นตอนการทำงาน

1. ออกแบบการเชื่อต่อวงจรตามโจทย์กำหนดให้

2. ต่อวงจรระหว่าง NodeMCU ลงบน Breadboard ตามที่ออกแบบไว้

2. เสียบบอร์ด NodeMCU เข้ากับเครื่องคอม เลือกบอร์ด และ Comport


```
int ledPin = D0;
int ledPin3 = D1;
int analogPin = A0; //ประกาศตัวแปร ให้ analogPin แทนขา analog ขาที่5
int val = 0;
```

```
void setup() {
 pinMode(ledPin, OUTPUT); // sets the pin as output
 pinMode(ledPin3, OUTPUT); // sets the pin as output
 Serial.begin(9600);
}
void loop() {
 val = analogRead(analogPin);
 Serial.print("val = ");
 Serial.println(val); // พิมพ์ค่าของตัวแปร val
 if (val < 900) { // ค่า 900 สามารถกำหนดปรับได้ตามค่าแสงในห้องต่างๆ
  digitalWrite(ledPin, LOW); // สั่งให้ LED ที่ Pin2 ดับ
  digitalWrite(ledPin3, HIGH); // สั่งให้ LED ที่ Pin3 ติดสว่าง
 }
 else {
  digitalWrite(ledPin, HIGH); // สั่งให้ LED ที่ Pin2 ติดสว่าง
  digitalWrite(ledPin3, LOW); // สั่งให้ LED ที่ Pin3 ดับ
 }
 delay(100);
```


}

ชื่องาน งานควบคุมอุปกรณ์ input เซ็นเซอร์ตรวจจับวัตถุ IR Infrared

วิชา 20901-9203 ชื่อวิชา การอินเทอร์เฟสในระบบสมองกลฝังตัวและไอโอที

ใบความรู้

Sensor IR Infrared ตรวจจับสิ่งกีดขวาง ตรวจจับวัตถุข้างหน้า ตัว Sensor จะใช้หลักการสะท้อนของแสง อินฟราเรด ตัวส่งยิงแสงออกไปตกกระทบวัตถุ และรับค่าการสะท้อนกลับเข้าตัวรับ

NodeMCU ESP8266 -> หลอดไฟ LED

• ขาD0 -> LED1

NodeMCU ESP8266 -> เซ็นเซอร์ตรวจจับวัตถุ IR Infrared

- D1 -> A0
- Vin -> Vcc
- GND -> GND

ขั้นตอนการทำงาน

16.ออกแบบการเชื่อต่อวงจรตามโจทย์กำหนดให้

2. ต่อวงจรระหว่าง NodeMCU ลงบน Breadboard ตามที่ออกแบบไว้

17.เสียบบอร์ด NodeMCU เข้ากับเครื่องคอม เลือกบอร์ด และ Comport


```
int ledPin = D0;
int digitalPin = D1;
int val = 0;
void setup() {
    pinMode(ledPin, OUTPUT); // sets the pin as output
    pinMode(digitalPin, INPUT); // sets the pin as input
    Serial.begin(9600);
}
void loop() {
```

```
val = digitalRead(digitalPin); //อ่านค่าสัญญาณ digital ขาD1 ที่ต่อกับ เซ็นเซอร์
ตรวจจับวัตถุ IR Infrared
Serial.print("val = "); // พิมพ์ข้อมความส่งเข้าคอมพิวเตอร์ "val = "
Serial.println(val); // พิมพ์ค่าของตัวแปร val
if (val == 0) { // ค่า เป็น 0 ตรวจจับเจอวัตถุ สั่งให้ไฟ LED ติด
digitalWrite(ledPin, HIGH); // สั่งให้ LED ติดสว่าง
}
else {
digitalWrite(ledPin, LOW); // สั่งให้ LED ดับ
}
delay(100);
```


💿 sketch_jun25a Arduino 1.8.7		
File Edit Sketch Tools Help		
sketch_jun25a§		
<pre>void setup() { pinMode(ledPin, OUTPUT) pinMode(digitalPin, INF</pre>	© COM3	WWW.myardu moster
<pre>Serial.begin(9600); }</pre>	val = 0 val = 0 val = 0	•
<pre>void loop() [] val = digitalRead(digit Serial.print("val = "); Serial.print(nval); // if (val == 0) { // on i digitalWrite(ledPin, }</pre>	Val = 0 Val = 0	ш
Global variables use 26812 Uploading 267952 bytes fro	Autoscroll Show timestamp	▼ Both NL & CR ▼ 9600 baud ▼ Clear output
 		[618] [918] [1008]
MDU 1.0 (ESP-12E Module), 80 MHz, FI	ash, Disabled, 4M (no SPIFFS), v2 Lower Memory,	Disabled, None, Only Sketch, 11520D on COM3

ชื่องาน งานวัดอุณหภมูิและความชื้นด้วย Sensor DHT11 แสดงผลออกจอ LCD 1602

วิชา 20901-9203 ชื่อวิชา การอินเทอร์เฟสในระบบสมองกลฝังตัวและไอโอที

ใบความรู้

การต่อวงจร

LCD ----> ESP8266

 GND
 ---->
 GND

 VCC
 ---->
 Vin

 SDA
 ---->
 D2

 SCL
 ---->
 D1

DHT11 ----> ESP8266

+ ----> Vin OUT ----> D4 - ----> GND

โหลด library โมดูลจอ LCD NodeMCU ESP8266

LiquidCrystal_I2C

https://www.arduinoall.net/arduino-tutor/code/LiquidCrystal_i2c.rar

ขั้นตอนการทำงาน

1. ออกแบบการเชื่อต่อวงจรตามโจทย์กำหนดให้

2. ต่อวงจรระหว่าง NodeMCU ลงบน Breadboard ตามที่ออกแบบไว้

2. เสียบบอร์ด NodeMCU เข้ากับเครื่องคอม เลือกบอร์ด และ Comport

#include <wire.h></wire.h>	
<pre>#include <liquidcrystal_i2c.h></liquidcrystal_i2c.h></pre>	
#include "DHT.h"	
#define DHTPIN D4	
#define DHTTYPE DHT11	
DHT dht(DHTPIN, DHTTYPE);	
LiquidCrystal_I2C lcd(0x27, 16, 2);	
void setup() {	
Serial.begin (115200);	
dht.begin();	

```
lcd.begin();
                    //เปิดหน้าจอ
 lcd.display();
                    //เปิดไฟ backlight
 lcd.backlight();
                   //ล้างหน้าจอ
 lcd.clear();
}
void loop() {
                                         //รับค่าความชื้น
 float h = dht.readHumidity();
                                          //รับค่าอุณหภูมิ
 float t = dht.readTemperature();
 lcd.setCursor(0, 0);
                                          //แสดงค่าอุณหภูมิ
 lcd.print("Temp = "+String(t,1)+" C");
 lcd.setCursor(0, 1);
 lcd.print("Humi = "+String(h,1)+" %"); //แสดงค่าความซื้น
 delay(1000);
 lcd.clear();
```

