Unit

39

straight line equation

A line parallel to the Y axis and intersects the X axis at the point $(a, 0)$.

เส้นตรงจะขนานแกน Y ทางขวา
ระยะห่างจากแกน Y เท่ากับ a หน่วย
และตัดแกน X ที่จุด $(a, 0)$

$$
x=a
$$

รูปที่ 5.1

A straight line parallel to the X axis and intersecting the Y axis at the point $(0, b)$.

$$
1 \text { If } b>0
$$

เส้นตรงจะขนานและอยู่เหนือแกน X ระยะห่างจากแกน X เท่ากับ b หน่วย และตัดแกน Y ที่จุด $(0, \mathrm{~b})$

สมการ

$$
y=b
$$

รูปที่ 5.3

2 If b <0

$$
\begin{aligned}
& \text { เส้นตรงจะขนานและอยู่ใต้แกน } \mathrm{X} \\
& \text { ระยะห่างจากแกน } \mathrm{X} \text { เท่ากับ }|\mathrm{b}| \text { หน่วย } \\
& \text { และตัดแกน } \mathrm{Y} \text { ที่จุด }(0,-\mathrm{b}) \\
& \text { สมการ } \mathrm{y}=-\mathrm{b}
\end{aligned}
$$

3 If $b=0$, the line lies on the X axis or is the X axis.

Straight line with defined points and slopes (point-slope form)

Let $R(x, y)$ and $P\left(x _1, y _1\right)$ be any points on the line L. The slope of the line $P R$ is equal to the slope of the line L, which is equal to m.

$$
\begin{aligned}
& \frac{y-y_{1}}{x-x_{1}}=m \\
& \text { จะได้ } \\
& \mathrm{y}-\mathrm{y}_{1}=\mathrm{m}\left(\mathrm{x}-\mathrm{x}_{1}\right)
\end{aligned}
$$

Straight line with two points (two point form)

ให้เส้นตรง L ผ่านจุด $P\left(x_{1}, y_{1}\right)$ และ $Q\left(x_{2}, y_{2}\right)$

รูปที่ 5.7

ให้ $\mathrm{R}(\mathrm{x}, \mathrm{y})$ เป็นจุดใดๆ บนเส้นตรง L
ความชันของเส้นตรง L จากจุด P และ $R=\frac{y-y_{1}}{x-x_{1}}$
ความชันของเส้นตรง L จากจุด P และ $\mathrm{Q}=\frac{\mathrm{y}_{2}-\mathrm{y}_{1}}{\mathrm{x}_{2}-\mathrm{x}_{1}}$
เนื่องจากความชันของเส้นตรงเดียวกันจะเท่ากัน
จะได้

$$
\frac{y-y_{1}}{x-x_{1}}=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}
$$

Straight line with slope and Y intercept form (slope - intercept form)

Let the line L have slope m and the Y intercept is b or the Y intercept is $(0, b)$.

From the equation of a straight line given the point and slope is $y-y_{-} 1=m\left(x-x_{-} 1\right)$ Here $\left(x _1, y _1\right)$ is $(0, b)$ so $y-b=m(x-0)$

The equation for a straight line that determines the slope and intercept distance on the Y axis is $\mathrm{y}=\mathrm{mx}+\mathrm{b}$.

Straight line with X-intercept and Y-intercept

(intercept form)

Let the line L have an x-intercept of $(a, 0)$ and a y-intercept of $(0, b)$.

จากสมการเส้นตรงแบบกำหนดจุด 2 จุด คือ

$$
\begin{aligned}
& \frac{y-y}{x-x} \\
& (0, b)
\end{aligned}
$$

$$
\text { จะได้ } \begin{aligned}
\frac{y-0}{x-a} & =\frac{b-0}{0-a} \\
\frac{y}{b} & =\frac{x-a}{-a}=-\frac{x}{a}+1
\end{aligned}
$$

The equation for a straight line that determines the X -intercept distance and Y-intercept distance is = x/a $+\mathrm{y} / \mathrm{b}$.

The distance between a point and a straight line.

Let L be a straight line with the equation $A x+B y+C=0$ and $P\left(x _1\right.$, $y _1$) be any point on the plane that is not on the line L. The distance from point P in the line perpendicular to the line L. length d units, so that

$$
\mathrm{d}=\frac{\mathrm{IAx}_{1}+\mathrm{By}_{1}+\mathrm{Cl}}{\sqrt{\mathrm{~A}^{2}+\mathrm{B}^{2}}}
$$

Distance between parallel lines

Let the line $L_{-} 1$ which has the equation $A x+B y+C _1=0$ be parallel to the line $L _2$ which has the equation $A x+B y+C _2=$

0 . If d is the distance between the parallel lines $L_{-} 1$ and $L_{-} 2$, then

$$
d=\frac{\left|C_{1}-C_{2}\right|}{\sqrt{A^{2}+B^{2}}}
$$

