

Circle with center at origin (0,0)

A circle is centered at the origin or point $(0,0)$ and has radius r units as shown in Figure 6.4

Figure 6.4 Let $\mathrm{P}(\mathrm{x}, \mathrm{y})$ be any point on the circumference of a circle.

$$
\begin{array}{rll}
\text { จากสูตร }\left|P_{1} P_{2}\right| & = & \sqrt{\left(\mathrm{X}_{2}+\mathrm{X}_{1}\right)^{2}+\left(\mathrm{y}_{2}+\mathrm{y}_{1}\right)^{2}} \\
r & = & \sqrt{(X-0)^{2}+(y-0)^{2}} \\
r & = & \sqrt{\mathrm{X}^{2}+\mathrm{y}^{2}} \\
\mathrm{X}^{2}+\mathrm{y}^{2} & & r^{2}
\end{array}
$$

The equation of a circle with center at the origin $(0,0)$ and radius of length r units is:

$$
x^{2}+y^{2}=r^{2}
$$

A circle centered at the point (h, k).

A circle with center at point (h, k) and radius r as shown.

ให้ $\mathrm{P}(\mathrm{x}, \mathrm{y})$ เป็นจุดใดๆ บนเส้นรอบวงของวงกลมวงนี้

จากสูตร \mid	$P_{1} P_{2} \mid$
จะได้	$=\sqrt{\left(x_{2}-x_{1}\right)^{2}+\left(y_{2}-y_{1}\right)^{2}}$
	$=\sqrt{(x-h)^{2}+(y-k)^{2}}$
r^{2}	$=(x-h)^{2}+(y-k)^{2}$

สมการของวงกลมที่มีจุดศูนย์กลางอยู่ที่จุด (h, k) และมีรัศมียาว r หน่วย คือ

$$
(x-h)^{2}+(y-k)^{2}=r^{2}
$$

เราเรียก $(\mathrm{x}-\mathrm{h})^{2}+(\mathrm{y}-\mathrm{k})^{2}=\mathrm{r}^{2}$ ว่า สมการรูปมาตรฐานของวงกลม (The Standard Form of the Equation of a Circle)

example

Write the equation of the circle where the center is $(-3,2)$
and the radius is long. 5 units in standard form

จากสูตร

$$
\begin{aligned}
& (x-h)^{2}+(y-k)^{2}=r^{2} \\
& (x-(-3))^{2}+(y-2)^{2}=5^{2}
\end{aligned}
$$

ดังนั้น สมการวงกลมในรูปมาตรฐาน คือ

$$
(x+3)^{2}+(y-2)^{2}=25
$$

Find the center and radius of the circle.

1 Find it by arranging the equation into the form of a standard equation of a circle, which is

$$
(X-h)^{2}+(y-k)^{2}=r^{2}
$$

So the center is (h, k) and the radius is r.

exampl

2 Find it by arranging the equation in the form of a general equation of a circle, which is

$$
\text { แล้วจะได้ } \begin{aligned}
\mathrm{x}^{2}+\mathrm{y}^{2}+\mathrm{Dx}+\mathrm{Ey}+\mathrm{F} & =0 \\
\mathrm{D}=-2 \mathrm{~h}, \quad \mathrm{~h} & =\frac{\mathrm{D}}{-2} \\
\mathrm{E}=-2 \mathrm{k}, \quad \mathrm{k} & =\frac{\mathrm{E}}{-2} \\
\mathrm{~F}=\mathrm{h}^{2}+\mathrm{k}^{2}-\mathrm{r}^{2}, \quad \mathrm{r} & =\sqrt{\mathrm{h}^{2}+\mathrm{k}^{2}-\mathrm{F}} \\
& =\frac{\sqrt{\mathrm{D}^{2}+\mathrm{E}^{2}-4 \mathrm{~F}}}{2}
\end{aligned}
$$

ดังนั้น จุดศูนย์กลาง คือ (h, k) หรือ $\left(-\frac{D}{2},-\frac{\mathrm{E}}{2}\right)$

$$
\text { รัศมี คือ } r=\sqrt{\mathrm{h}^{2}+\mathrm{k}^{2}-\mathrm{F}}=\frac{\sqrt{\mathrm{D}^{2}+\mathrm{E}^{2}-4 \mathrm{~F}}}{2}
$$

Find the center and radius of the circle whose equation is

$$
x^{2}+y^{2}-12 x+16 y+19=0
$$

จากสมการ $x^{2}+y^{2}-12 x+16 y+19=0$
จะได้ $\mathrm{D}=-12, \mathrm{E}=16$ และ $\mathrm{F}=19$
จาก $h=-\frac{D}{2}$
$=-\frac{(-12)}{2}=6$
จาก $k=-\frac{E}{2}$
$=-\frac{16}{2}=-8$
จาก $r=\frac{\sqrt{D^{2}+E^{2}-4 F}}{2}$
We get $(h, k)=(6,-8)$ and $r=9$. That is, the center is $(6$,
-8) and the radius is 9 units long.

