

A parabola with the vertex at the origin.

The focal point is on the X or Y axis.

Type 1: Parabola opens to the right, as shown in
Figure 7.2.

The vertex is $\mathrm{V}(0,0)$.The focus point is $F(c, 0)$. The directrix is x
$=-c$. The axis of the parabola is the x-axis and the focal length is $|c|=c$.

Type 2: Parabola opens to the left, as shown in Figure 7.3.

The vertex is $V(0,0)$. The focus point is $F(-c, 0)$.The

รูปที่ 7.3

Type 3: Parabola opens at the top, as shown in Figure 7.4.

The vertex is $\mathrm{V}(0,0)$. The focal point is $F(0, c)$. The directrix is $y=-c$. The axis of the parabola is the Y axis. The focal length is $|c|=c$.

Type 4: Parabola opens at the bottom, as shown in

 Figure 7.5.The vertex is $V(0,0)$. The focal point is $F(0,-c)$. The directrix is $y=c$. The axis of the parabola is the Y axis and the focal length is $|-c|=c$.

Parabola with vertex at point (h, k)

From Figure 7.10, the vertex is $V(h, k)$, the focus is $F(h+c, k)$, the directrix is x
$=h-c$, let $P(x, y)$ be any point on the parabola and R is the point ($h-c, y$)

จะได้

$$
\begin{aligned}
|\mathrm{PR}| & =|\mathrm{PF}| \\
\mathrm{x}-(\mathrm{h}-\mathrm{c}) & =\sqrt{(\mathrm{x}-(\mathrm{h}+\mathrm{c}))^{2}+(\mathrm{y}-\mathrm{k})^{2}} \\
(\mathrm{x}-(\mathrm{h}-\mathrm{c}))^{2} & =(\mathrm{x}-(\mathrm{h}+\mathrm{c}))^{2}+(\mathrm{y}-\mathrm{k})^{2} \\
(\mathrm{y}-\mathrm{k})^{2} & =(\mathrm{x}-(\mathrm{h}-\mathrm{c}))^{2}-(\mathrm{x}-(\mathrm{h}+\mathrm{c}))^{2} \\
& =\mathrm{x}^{2}-2(\mathrm{~h}-\mathrm{c}) \mathrm{x}+(\mathrm{h}-\mathrm{c})^{2}-\left(\mathrm{x}^{2}-2(\mathrm{~h}+\mathrm{c}) \mathrm{x}+(\mathrm{h}+\mathrm{c})^{2}\right) \\
& =\mathrm{x}^{2}-2 \mathrm{hx}+2 \mathrm{cx}+(\mathrm{h}-\mathrm{c})^{2}-\mathrm{x}^{2}+2(\mathrm{~h}+\mathrm{c}) \mathrm{x}-(\mathrm{h}+\mathrm{c})^{2} \\
& =-2 \mathrm{hx}+2 \mathrm{cx}+\mathrm{h}^{2}-2 \mathrm{ch}+\mathrm{c}^{2}+2 \mathrm{hx}+2 \mathrm{cx}-\mathrm{h}^{2}-2 \mathrm{ch}-\mathrm{c}^{2} \\
& =4 \mathrm{cx}-4 \mathrm{ch} \\
& =4 \mathrm{c}(\mathrm{x}-\mathrm{h})
\end{aligned}
$$

That is, the standard form equation of a right-open parabola. whose vertex is at point (h, k) is $(y-k) 2=4 c(x-h)$ when $c>0$
or $\quad(y-k) \mathbf{2}=\mathbf{4}|c|(x-h)$

C standard form equations of the left open parabola that has
The vertex is at the point (h, k) which is

$$
(y-k)^{2}=-4|c|(x-h)
$$

© standard form equations of an open top parabola that has
The vertex is at the point (h, k) which is

$$
(x-h)=4|c|(y-k)
$$

C standard form equations of an open parabola at the bottom that has The vertex is at the point (h, k) which is

$$
(x-h)^{2} \quad=-4|c|(y-k)
$$

Graph of a parabola

(1) When the parabolic axis is parallel to the Y axis, the equation is $x^{2}+$ $A x+B y+C=0$ where A, B, C are constants and $B \neq 0$.
(2) When the parabolic axis is parallel to the X axis, the equation is $^{2}+$ $A x+B y+C=0$ where A, B, C are constants and $A \neq 0$.

