Unit

Algebraic functions

Ordered Pairs

Definition

The ordered pair $(\mathbf{a}, \mathrm{b})=(\mathbf{c}, \mathrm{d})$ if and only if $\mathrm{a}=\mathbf{c}$ and $b=d$.

Ordered Pairs are symbols that show the pairing of two things in parentheses (), separating each thing with a comma. Generally in mathematics it is popular to write ordered pairs (a, b) or (x, y) in which a or \mathbf{x} is the preceding element, b or y is the latter element. Switching between members The front member and the back member will display that pairing. changed from the original, that is, $(a, b) \neq(b, a)$

Definition

Let A and B be a set. The Cartesian product of A and B is denoted by $A \times B$, where $A \times B=\{(a, b) \mid a \in A$ and $b \in B\}$.

example Given $A=\{1,2,3\}, B=\{a, c\}$

Find $\mathrm{A} \times \mathrm{B}, \mathrm{B} \times \mathrm{A}, \mathrm{A} \times \mathrm{A}$, and $\mathrm{B} \times \mathrm{B}$.

$$
\begin{aligned}
& A \times B=\{(1, a),(1, c),(2, a),(2, c),(3, a),(3, c)\} \\
& B \times A=\{(a, 1),(a, 2),(a, 3),(c, 1),(c, 2),(c, 3)\} \\
& A \times A=\{(1,1),(1,2),(1,3),(2,1),(2,2),(2,3),(3,1),(3,2),(3,3)\} \\
& B \times B=\{(a, a),(a, c),(c, a),(c, c)\}
\end{aligned}
$$

สิ่งที่ควรทราบเกี่ยวกับผลคูณคาร์ทีเซียน

1. $\mathrm{A} \times \mathrm{B}=\mathrm{B} \times \mathrm{A}$ ก็ต่อเมื่อ $\mathrm{A}=\mathrm{B}$ และ $\mathrm{B}=\mathrm{A}$
2. ถ้า A มีสมาชิก m ตัว และ B มีสมาชิก n ตัว แล้ว $\mathrm{A} \times \mathrm{B}$ มีสมาชิก mn ตัว
3. $\mathrm{A} \times(\mathrm{B} \cup \mathrm{C})=(\mathrm{A} \times \mathrm{B}) \cup(\mathrm{A} \times \mathrm{C})$
4. $\mathrm{A} \times(\mathrm{B} \cap \mathrm{C})=(\mathrm{A} \times \mathrm{B}) \cap(\mathrm{A} \times \mathrm{C})$
5. $\mathrm{A} \times(\mathrm{B}-\mathrm{C})=(\mathrm{A} \times \mathrm{B})-(\mathrm{A} \times \mathrm{C})$
6. ถ้า A และ B เป็นเซตจำกัด $\mathrm{n}(\mathrm{A} \times \mathrm{B})=\mathrm{n}(\mathrm{A}) \times \mathrm{n}(\mathrm{B})$
7. ถ้า A เป็นเซตอนันต์, B เป็นเซตจำกัด $B \neq 0$ แล้ว $A \times B$ และ $B \times A$ เป็นเซตอนันต์

Definition

Let A and B be sets, r be relations. From A to

Domain and range of relations

Definition

Let r be the relationship from A to B. The domain of r is denoted by $D_{_} r$ where $D_{-} r=\{x \mid(x, y) \in r\}$ and the range of r is denoted by R_r.where R_r $=\{y \mid(x, y) \in r\}$

จงพิจารณาความสัมพันธ์ต่อไปนี้

$$
\begin{aligned}
\mathrm{r} & =\{(1,6),(2,7),(3,8),(4,9),(5,10)\} \\
\text { และ } \mathrm{D}_{\mathrm{r}} & =\{1,2,3,4,5\} \\
\mathrm{R}_{\mathrm{r}} & =\{6,7,8,9,10\}
\end{aligned}
$$

เขียนแผนภาพแสดงการจับคู่ของโดเมนและเรนจ์ ดังนี้

Checking function by graph

It is useful to determine whether a relationship is a function or not using a graph. How to check can be done by Draw a line parallel to the y-axis. The line will only intersect the graph at one point. The point at which the line intersects the graph is the value of the function x.

Execution of the function

ให้ f และ g เป็นฟังก์ชัน D_{f} และ D_{g} เป็นโดเมนของ f และ g ตามลำดับ

1. $(\mathrm{f}+\mathrm{g})(\mathrm{x})=\mathrm{f}(\mathrm{x})+\mathrm{g}(\mathrm{x})$ และ $\mathrm{D}_{\mathrm{f}+\mathrm{g}}=\mathrm{D}_{\mathrm{f}} \cap \mathrm{D}_{\mathrm{g}}$
2. $(\mathrm{f}-\mathrm{g})(\mathrm{x})=\mathrm{f}(\mathrm{x})-\mathrm{g}(\mathrm{x})$ และ $\mathrm{D}_{\mathrm{f}-\mathrm{g}}=\mathrm{D}_{\mathrm{f}} \cap \mathrm{D}_{\mathrm{g}}$
3. $(\mathrm{f} \cdot \mathrm{g})(\mathrm{x})=\mathrm{f}(\mathrm{x})-\mathrm{g}(\mathrm{x})$ และ $\mathrm{D}_{\mathrm{f} \cdot \mathrm{g}}=\mathrm{D}_{\mathrm{f}} \cap \mathrm{D}_{\mathrm{g}}$
4. $\left(\frac{\mathrm{f}}{\mathrm{g}}\right)(\mathrm{x})=\frac{\mathrm{f}(\mathrm{x})}{\mathrm{g}(\mathrm{x})}$ และ $\mathrm{D}_{\frac{\mathrm{f}}{\mathrm{g}}} \quad=\mathrm{D}_{\mathrm{f}} \cap \mathrm{D}_{\mathrm{g}}-\{\mathrm{x} \lg (\mathrm{x}) \neq 0\}$

$$
\begin{array}{lll}
\text { example } \\
\text { และ } & f=\{(1,3),(2,5),(3,2),(4,6)\} \\
\text { จงหา } & f(2,1),(3,0),(4,2),(5,-1)\} \\
\text { จง } & f-g, f g \text { และ } \frac{f}{g}
\end{array}
$$

เนื่องจาก $\mathrm{f}+\mathrm{g}, \mathrm{f}-\mathrm{g}, \mathrm{f} \cdot \mathrm{g}$ มีโดเมนเป็น $\mathrm{D}_{\mathrm{f}} \cap \mathrm{D}_{\mathrm{g}}$

$$
D_{f} \cap D_{g}=\{2,3,4\}
$$

(1) $\mathrm{f}+\mathrm{g}=\{(2,5+1),(3,2+0),(4,6+2)\}$

$$
=\{(2,6),(3,2),(4,8)\}
$$

(2) $f-g$

$$
\begin{aligned}
& =\{(2,5-1),(3,2-0),(4,6-2)\} \\
& =\{(2,4),(3,2),(4,4)\} \\
& =\{(2,5 \cdot 1),(3,2 \cdot 0),(4,6 \cdot 2)\} \\
& =\{(2,5),(3,0),(4,12)\}
\end{aligned}
$$

$$
\text { (3) } \mathrm{f} \cdot \mathrm{~g}=\{(2,5 \cdot 1),(3,2 \cdot 0),(4,6 \cdot 2)\}
$$

(4) เนื่องจาก $\frac{\mathrm{f}}{\mathrm{g}}$ มีโดเมนเป็น $\mathrm{D}_{\frac{\mathrm{f}}{\mathrm{g}}}=\mathrm{D}_{\mathrm{f}} \cap \mathrm{D}_{\mathrm{g}}-\{\mathrm{x} \mid \mathrm{g}(\mathrm{x}) \neq 0\}$

$$
\begin{aligned}
\mathrm{D}_{\frac{\mathrm{f}}{}} & =\mathrm{D}_{\mathrm{f}} \cap \mathrm{D}_{\mathrm{g}}-\{3\} \\
& =\{2,4\} \\
\frac{\mathrm{f}}{\mathrm{~g}} & =\left\{\left(2, \frac{5}{1}\right),\left(4, \frac{6}{2}\right)\right\} \\
& =\{(2,5),(4,3)\}
\end{aligned}
$$

