

Ordered Pairs

Definition

The ordered pair (a, b) = (c, d) if and only if a = c and b = d.

Ordered Pairs are symbols that show the pairing of two things in parentheses (), separating each thing with a comma. Generally in mathematics it is popular to write ordered pairs (a, b) or (x, y) in which a or x is the preceding element, b or y is the latter element. Switching between members The front member and the back member will display that pairing. changed from the original, that is, (a, b) \neq (b, a)

exampleGiven $A = \{1, 2, 3\}$, $B = \{a, c\}$
Find $A \times B$, $B \times A$, $A \times A$, and $B \times B$. $A \times B = \{(1, a), (1, c), (2, a), (2, c), (3, a), (3, c)\}$
 $B \times A = \{(a, 1), (a, 2), (a, 3), (c, 1), (c, 2), (c, 3)\}$
 $A \times A = \{(1, 1), (1, 2), (1, 3), (2, 1), (2, 2), (2, 3), (3, 1), (3, 2), (3, 3)\}$
 $B \times B = \{(a, a), (a, c), (c, a), (c, c)\}$

สิ่งที่ควรทราบเกี่ยวกับผลคูณคาร์ทีเซียน

1.
$$A \times B = B \times A$$
 ก็ต่อเมื่อ $A = B$ และ $B = A$

2. ถ้า A มีสมาชิก m ตัว และ B มีสมาชิก n ตัว แล้ว A \times B มีสมาชิก mn ตัว

- 3. $A \times (B \cup C) = (A \times B) \cup (A \times C)$
- 4. $A \times (B \cap C) = (A \times B) \cap (A \times C)$
- 5. $A \times (B C)$ = $(A \times B) (A \times C)$
- 6. ถ้า A และ B เป็นเซตจำกัด n (A \times B) = n(A) \times n(B)
- 7. ถ้า A เป็นเซตอนันต์, B เป็นเซตจำกัด B ≠ 0 แล้ว A × B และ B × A เป็นเซตอนันต์

Order Size

Domain and range of relations

Definition

Let r be the relationship from A to B. The domain of r is denoted by D_r.where D_r = {x | (x, y) \in r} and the range of r is denoted by R_r.where R_r = {y | (x, y) \in r} **Function**

จงพิจารณาความสัมพันธ์ต่อไปนี้

 $\mathbf{r} = \{(1, 6), (2, 7), (3, 8), (4, 9), (5, 10)\}$

ແລະ D_r = {1, 2, 3, 4, 5}

 $R_r = \{6, 7, 8, 9, 10\}$

เขียนแผนภาพแสดงการจับคู่ของโดเมนและเรนจ์ ดังนี้

Checking function by graph

It is useful to determine whether a relationship is a function or not using a graph. How to check can be done by Draw a line parallel to the y-axis. The line will only intersect the graph at one point. The point at which the line intersects the graph is the value of the function x.

example	กำหนด	f = {(1, 3), (2, 5), (3, 2), (4, 6)}	
	และ	g = {(2, 1), (3, 0), (4, 2), (5, -1)}	
	จงหา	f + g, f - g, f g ແລະ $\displaystyle rac{f}{g}$	

เนื่อง	งจาก f + g, f -	g, f $ullet$ g มีโดเมนเป็น $ { m D}_{ m f}^{} \cap { m D}_{ m g}^{} $
	$\mathrm{D_{f}} \cap \mathrm{D_{g}}$	$= \{2, 3, 4\}$
(1)	f + g	$= \{(2, 5+1), (3, 2+0), (4, 6+2)\}$
		$= \{(2, 6), (3, 2), (4, 8)\}$
(2)	f - g	$= \{(2, 5 - 1), (3, 2 - 0), (4, 6 - 2)\}$
		$= \{(2, 4), (3, 2), (4, 4)\}$
(3)	f • g	$= \{(2, 5 \cdot 1), (3, 2 \cdot 0), (4, 6 \cdot 2)\}$
		$= \{(2, 5), (3, 0), (4, 12)\}$
(4)	เนื่องจาก $rac{\mathrm{f}}{\mathrm{g}}$ มี	โดเมนเป็น $\mathrm{D}_{\mathrm{fg}}^{}$ = $\mathrm{D}_{\mathrm{f}}^{} \cap \mathrm{D}_{\mathrm{g}}^{}$ - {x g(x) ≠

0}

 $D_{\!\!\!\frac{f}{g}}$

 $\frac{f}{g}$

= $D_{f} \cap D_{g} - \{3\}$ = $\{2, 4\}$ = $\{(2, \frac{5}{1}), (4, \frac{6}{2})\}$ = $\{(2, 5), (4, 3)\}$

