Unit

 $\sqrt{\pi} \quad 5.59$
Trigonometric ratios from right triangles

A is called the side opposite angle A. Call b the side adjacent to angle A. c is called the hypotenuse.

$$
\begin{aligned}
\sin \mathrm{A} & =\frac{\text { ด้านตรงข้ามมุม } \mathrm{A}}{\text { ด้านตรงข้ามมุมฉาก }} \\
\cos \mathrm{A} & =\frac{\text { ด้านประชิดมุม } \mathrm{A}}{\text { ด้านตรงข้ามมุมฉาก }} \\
\tan \mathrm{A} & =\frac{\text { ด้านตรงข้ามมุม } \mathrm{A}}{\text { ด้านประชิดมุม } \mathrm{A}}
\end{aligned}
$$

$$
\begin{aligned}
\csc \mathrm{A} & =\frac{\text { ด้านตรงข้ามมุมฉาก }}{\text { ด้านตรงข้ามมุม } \mathrm{A}} \\
\sec \mathrm{~A} & =\frac{\text { ด้านตรงข้ามมุมฉาก }}{\text { ด้านประชิดมุม } \mathrm{A}} \\
\cot \mathrm{~A} & =\frac{\text { ด้านประชิดมุม } \mathrm{A}}{\text { ด้านตรงข้ามมุม } \mathrm{A}}
\end{aligned}
$$

example

From the right triangle, find the angle size 0 (1 decimal place).

วิธีทำ

$$
\begin{aligned}
& =\frac{2}{3} \\
& =0.6667 \\
& =33.7^{\circ}
\end{aligned}
$$

Finding Trigonometric Functions for

Angles Around the Center

A unit circle is a circle with a radius of 1 unit. The center is at the origin. Orthogonal coordinate plane

รูปที่ 12.6

Evaluating trigonometric functions of angles with ends on the x and y axes.

Relationship of trigonometric function values of angles in the 2 nd quadrant to the 1 st quadrant. If θ is an angle in the first quadrant, then the angle in the second quadrant is written in general form as $\pi-0$ or $180^{\circ}-\theta$.

รูปที่ 12.10

that is

$$
\begin{aligned}
& \sin (\pi-\theta)=\sin \left(180^{\circ}-\theta\right)=\sin \theta \\
& \cos (\pi-\theta)=\cos \left(180^{\circ}-\theta\right)=-\cos \theta \\
& \tan (\pi-\theta)=\tan \left(180^{\circ}-\theta\right)=-\tan \theta \\
& \csc (\pi-\theta)=\csc \left(180^{\circ}-\theta\right)=\csc \theta \\
& \sec (\pi-\theta)=\sec \left(180^{\circ}-\theta\right)=-\sec \theta \\
& \operatorname{co~} \pi \mathrm{t}(\pi-\theta)=\cot \left(180^{\circ}-\theta\right)=-\cot \theta
\end{aligned}
$$

Relationship of trigonometric function values of angles in the 3rd quadrant and the 1 st quadrant. If θ is an angle in the 1 st quadrant, then the angle in the 3 rd quadrant is written in general form as $(\pi+0)$ or $\left(180^{\circ}+\theta\right)$.

รูปที่ 12.11
that is

$$
\begin{aligned}
& \sin (\pi+\theta)=\sin \left(180^{\circ}+\theta\right)=-\sin \theta \\
& \cos (\pi+\theta)=\cos \left(180^{\circ}+\theta\right)=-\cos \theta \\
& \tan (\pi+\theta)=\tan \left(180^{\circ}+\theta\right)=\tan \theta \\
& \csc (\pi+\theta)=\csc \left(180^{\circ}+\theta\right)=-\csc \theta \\
& \sec (\pi+\theta)=\sec \left(180^{\circ}+\theta\right)=-\sec \theta \\
& \cot (\pi+\theta)=\cot \left(180^{\circ}+\theta\right)=\cot \theta
\end{aligned}
$$

Relationship of trigonometric function values of angles in the 4th quadrant and the 1st quadrant. If θ is an angle in the 1 st quadrant, then the angle in the 4 th quadrant is written in general form as $(2 \pi-\theta)$ or $\left(360^{\circ}-\theta\right)$.

รูปที่ 12.12
that is

$$
\begin{aligned}
& \sin (2 \pi+\theta)=\sin \left(360^{\circ}+\theta\right)=-\sin \theta \\
& \cos (2 \pi+\theta)=\cos \left(360^{\circ}+\theta\right)=\cos \theta \\
& \tan (2 \pi+\theta)=\tan \left(360^{\circ}+\theta\right)=-\tan \theta \\
& \csc (2 \pi+\theta)=\csc \left(360^{\circ}+\theta\right)=-\csc \theta \\
& \sec (2 \pi+\theta)=\sec \left(360^{\circ}+\theta\right)=\sec \theta \\
& \cot (2 \pi+\theta)=\cot \left(360^{\circ}+\theta\right)=-\cot \theta
\end{aligned}
$$

example

Find the following values.

รูปที่ 12.15

(2) $\cos 870^{\circ}$

$$
\begin{array}{ll}
= & \cos \left(2 \cdot 360^{\circ}+150^{\circ}\right) \\
= & \cos 150^{\circ} \\
= & \cos \left(180^{\circ}-30^{\circ}\right) \\
= & -\cos 30^{\circ} \\
= & -\frac{\sqrt{3}}{2}
\end{array}
$$

(3) $\tan \frac{11 \pi}{3}=\tan \left(2 \cdot 2 \pi-\frac{\pi}{3}\right)$
$=\quad-\tan \frac{\pi}{3}$
$\begin{array}{ll}= & -\sqrt{3}\end{array}$

รูปที่ 12.17

Operations of trigonometric functions

ผลบวกและผลต่างของมุม 2 มุม

1. $\cos (\mathrm{A}+\mathrm{B})=\quad \cos \mathrm{A} \cos \mathrm{B}-\sin \mathrm{A} \sin \mathrm{B}$
2. $\cos (\mathrm{A}-\mathrm{B})=\quad \cos \mathrm{A} \cos \mathrm{B}+\sin \mathrm{A} \sin \mathrm{B}$
3. $\sin (A+B)=\sin A \cos B+\cos A \sin B$
4. $\sin (\mathrm{A}-\mathrm{B})=\sin \mathrm{A} \cos \mathrm{B}-\cos \mathrm{A} \sin \mathrm{B}$
5. $\tan (A+B)=\frac{\tan A+\tan B}{1-\tan A \tan B}$
6. $\tan (\mathrm{A}-\mathrm{B})=\frac{\tan \mathrm{A}-\tan \mathrm{B}}{1+\tan \mathrm{A} \tan \mathrm{B}}$

จงหาค่า $\sin 105^{\circ} \cos 15^{\circ}$

